

FILES:

22. what will be the position of the file marker?

a: fseek(ptr,0,SEEK_SET);

b: fseek(ptr,0,SEEK_CUR);

Answer :

a: The SEEK_SET sets the file position marker to the starting of the file.

b: The SEEK_CUR sets the file position marker to the current position

of the file.

23.
What is the problem with the following code segment?

while ((fgets(receiving array,50,file_ptr)) != EOF)

;

Answer & Explanation:

 fgets returns a pointer. So the correct end of file check is checking for != NULL.

24.
#include<stdio.h>

main()

{

FILE *ptr;

char i;

ptr=fopen("zzz.c","r");

while((i=fgetch(ptr))!=EOF)

printf("%c",i);

}

Answer:

contents of zzz.c followed by an infinite loop

Explanation:

The condition is checked against EOF, it should be checked against NULL.

25.
There were 10 records stored in “somefile.dat” but the following program printed 11 names. What went wrong?

void main()

{

struct student

{

char name[30], rollno[6];

}stud;

FILE *fp = fopen(“somefile.dat”,”r”);

while(!feof(fp))

 {

fread(&stud, sizeof(stud), 1 , fp);

puts(stud.name);

}

}

Explanation:

fread reads 10 records and prints the names successfully. It will return EOF only when fread tries to read another record and fails reading EOF (and returning EOF). So it prints the last record again. After this only the condition feof(fp) becomes false, hence comes out of the while loop.

STRUCTURES:

26.
#include<stdio.h>

main()

{

 struct xx

 {

 int x=3;

 char name[]="hello";

 };

struct xx *s=malloc(sizeof(struct xx));

printf("%d",s->x);

printf("%s",s->name);

}

Answer:

Compiler Error

Explanation:
Initialization should not be done for structure members inside the structure declaration

27.
struct aaa{

struct aaa *prev;

int i;

struct aaa *next;

};

main()

{

 struct aaa abc,def,ghi,jkl;

 int x=100;

 abc.i=0;abc.prev=&jkl;

 abc.next=&def;

 def.i=1;def.prev=&abc;def.next=&ghi;

 ghi.i=2;ghi.prev=&def;

 ghi.next=&jkl;

 jkl.i=3;jkl.prev=&ghi;jkl.next=&abc;

 x=abc.next->next->prev->next->i;

 printf("%d",x);

}

Answer:

2

Explanation:

above all statements form a double circular linked list;

abc.next->next->prev->next->i

this one points to "ghi" node the value of at particular node is 2.

28.
struct point

 {

 int x;

 int y;

 };

struct point origin,*pp;

main()

{

pp=&origin;

printf("origin is(%d%d)\n",(*pp).x,(*pp).y);

printf("origin is (%d%d)\n",pp->x,pp->y);

}

Answer:

origin is(0,0)

origin is(0,0)

Explanation:

pp is a pointer to structure. we can access the elements of the structure either with arrow mark or with indirection operator.

Note:

Since structure point is globally declared x & y are initialized as zeroes

29.
main()

{

struct student

{

char name[30];

struct date dob;

}stud;

struct date

 {

 int day,month,year;

 };

 scanf("%s%d%d%d", stud.rollno, &student.dob.day, &student.dob.month, &student.dob.year);

}

Answer:

Compiler Error: Undefined structure date

Explanation:

Inside the struct definition of ‘student’ the member of type struct date is given. The compiler doesn’t have the definition of date structure (forward reference is not allowed in C in this case) so it issues an error.

PRE PROCESSOR:

30.
#define max 5

#define int arr1[max]

main()

{

typedef char arr2[max];

arr1 list={0,1,2,3,4};

arr2 name="name";

printf("%d %s",list[0],name);

}

Answer:

Compiler error (in the line arr1 list = {0,1,2,3,4})

Explanation:

arr2 is declared of type array of size 5 of characters. So it can be used to declare the variable name of the type arr2. But it is not the case of arr1. Hence an error.

Rule of Thumb:

#defines are used for textual replacement whereas typedefs are used for declaring new types.

31.
#if something == 0

int some=0;

#endif

main()

{

int thing = 0;

printf("%d %d\n", some ,thing);

}

Answer
0 0

Explanation

This code is to show that preprocessor expressions are not the same as the ordinary expressions. If a name is not known the preprocessor treats it to be equal to zero

32.
#define DIM(array, type) sizeof(array)/sizeof(type)

main()

{

int arr[10];

printf(“The dimension of the array is %d”, DIM(arr, int));

}

Answer:

 10

Explanation:

The size of integer array of 10 elements is 10 * sizeof(int).

 The macro expands to sizeof(arr)/sizeof(int) => 10 * sizeof(int) / sizeof(int) => 10.

33.
#define assert(cond) if(!(cond)) \

 (fprintf(stderr, "assertion failed: %s, file %s, line %d \n",#cond,\

 __FILE__,__LINE__), abort())

void main()

{

int i = 10;

if(i==0)

 assert(i < 100);

else

 printf("This statement becomes else for if in assert macro");

}

Answer:

 No output

Explanation:

The else part in which the printf is there becomes the else for if in the assert macro. Hence nothing is printed.

The solution is to use conditional operator instead of if statement,

#define assert(cond) ((cond)?(0): (fprintf (stderr, "assertion failed: \ %s, file %s, line %d \n",#cond, __FILE__,__LINE__), abort()))

Note:

However this problem of “matching with nearest else” cannot be solved by the usual method of placing the if statement inside a block like this,

#define assert(cond) { \

if(!(cond)) \

 (fprintf(stderr, "assertion failed: %s, file %s, line %d \n",#cond,\

 __FILE__,__LINE__), abort()) \

}

MISCELLANEOUS:

34.
main()

{

char name[10],s[12];

scanf(" \"%[^\"]\"",s);

}

How scanf will execute?

Answer:

First it checks for the leading white space and discards it.Then it matches with a quotation mark and then it reads all character upto another quotation mark.

35.
main()

{

 char c=' ',x,convert(z);

 getc(c);

 if((c>='a') && (c<='z'))

 x=convert(c);

 printf("%c",x);

}

convert(z)

{

 return z-32;

}

Answer:

Compiler error

Explanation:

declaration of convert and format of getc() are wrong.

36.
main(int argc, char **argv)

{

 printf("enter the character");

 getchar();

 sum(argv[1],argv[2]);

}

sum(num1,num2)

int num1,num2;

{

 return num1+num2;

}

Answer:

Compiler error.

Explanation:

argv[1] & argv[2] are strings. They are passed to the function sum without converting it to integer values.

37.
main()

{

 int i;

 i = abc();

 printf("%d",i);

}

abc()

{

 _AX = 1000;

}

Answer:

1000

Explanation:

Normally the return value from the function is through the information from the accumulator. Here _AH is the pseudo global variable denoting the accumulator. Hence, the value of the accumulator is set 1000 so the function returns value 1000.

38.
int i;

main(){

int t;

for (t=4;scanf("%d",&i)-t;printf("%d\n",i))

printf("%d--",t--);

}

// If the inputs are 0,1,2,3 find the o/p

Answer:

4--0

3--1

2--2

Explanation:

Let us assume some x= scanf("%d",&i)-t the values during execution

will be,

 t i x

 4 0 -4

 3 1 -2

 2 2 0

39. main()

 {

 char a[100];

 a[0]='a';a[1]]='b';a[2]='c';a[4]='d';

 abc(a);

}

abc(char a[]){

 a++;

 printf("%c",*a);

 a++;

 printf("%c",*a);

}

Explanation:

The base address is modified only in function and as a result a points to 'b' then after incrementing to 'c' so bc will be printed.

40.
func(a,b)

int a,b;

{

 return(a= (a==b));

}

main()

{

int process(),func();

printf("The value of process is %d !\n ",process(func,3,6));

}

process(pf,val1,val2)

int (*pf) ();

int val1,val2;

{

return((*pf) (val1,val2));

 }

Answer:

The value if process is 0 !

Explanation:

The function 'process' has 3 parameters - 1, a pointer to another function 2 and 3, integers. When this function is invoked from main, the following substitutions for formal parameters take place: func for pf, 3 for val1 and 6 for val2. This function returns the result of the operation performed by the function 'func'. The function func has two integer parameters. The formal parameters are substituted as 3 for a and 6 for b. since 3 is not equal to 6, a==b returns 0. therefore the function returns 0 which in turn is returned by the function 'process'.

41.
void main()

{

int k=ret(sizeof(float));

printf("\n here value is %d",++k);

}

int ret(int ret)

{

ret += 2.5;

return(ret);

}

Answer:

 Here value is 7

Explanation:

The int ret(int ret), ie., the function name and the argument name can be the same.

Firstly, the function ret() is called in which the sizeof(float) ie., 4 is passed, after the first expression the value in ret will be 6, as ret is integer hence the value stored in ret will have implicit type conversion from float to int. The ret is returned in main() it is printed after and preincrement.

42.
main()

{

int i=10;

void pascal f(int,int,int);

f(i++,i++,i++);

printf(" %d",i);

}

void pascal f(integer :i,integer:j,integer :k)

{

write(i,j,k);

}

Answer:

Compiler error: unknown type integer

Compiler error: undeclared function write

Explanation:

Pascal keyword doesn’t mean that pascal code can be used. It means that the function follows Pascal argument passing mechanism in calling the functions.

43.
void pascal f(int i,int j,int k)

{

printf(“%d %d %d”,i, j, k);

}

void cdecl f(int i,int j,int k)

{

printf(“%d %d %d”,i, j, k);

}

main()

{

int i=10;

f(i++,i++,i++);

printf(" %d\n",i);

i=10;

f(i++,i++,i++);

printf(" %d",i);

}

Answer:

10 11 12 13

12 11 10 13

Explanation:

Pascal argument passing mechanism forces the arguments to be called from left to right. cdecl is the normal C argument passing mechanism where the arguments are passed from right to left.

44.What is the output for the program given below

 typedef enum errorType{warning, error, exception,}error;

 main()

 {

 error g1;

 g1=1;

 printf("%d",g1);

 }

Answer

Compiler error: Multiple declaration for error

Explanation
The name error is used in the two meanings. One means that it is a enumerator constant with value 1. The another use is that it is a type name (due to typedef) for enum errorType. Given a situation the compiler cannot distinguish the meaning of error to know in what sense the error is used:

error g1;

g1=error;

// which error it refers in each case?

When the compiler can distinguish between usages then it will not issue error (in pure technical terms, names can only be overloaded in different namespaces).

Note: the extra comma in the declaration,

enum errorType{warning, error, exception,}

is not an error. An extra comma is valid and is provided just for programmer’s convenience.

45.
 typedef struct error{int warning, error, exception;}error;

 main()

 {

 error g1;

 g1.error =1;

 printf("%d",g1.error);

 }

Answer

1

Explanation
The three usages of name errors can be distinguishable by the compiler at any instance, so valid (they are in different namespaces).

Typedef struct error{int warning, error, exception;}error;

This error can be used only by preceding the error by struct kayword as in:

struct error someError;

typedef struct error{int warning, error, exception;}error;

This can be used only after . (dot) or -> (arrow) operator preceded by the variable name as in :

g1.error =1;

printf("%d",g1.error);

typedef struct error{int warning, error, exception;}error;

This can be used to define variables without using the preceding struct keyword as in:

error g1;

Since the compiler can perfectly distinguish between these three usages, it is perfectly legal and valid.

Note

This code is given here to just explain the concept behind. In real programming don’t use such overloading of names. It reduces the readability of the code. Possible doesn’t mean that we should use it!

46.What is the output for the following program

main()

 {

 int arr2D[3][3];

 printf("%d\n", ((arr2D==* arr2D)&&(* arr2D == arr2D[0])));

 }

Answer
1

Explanation
This is due to the close relation between the arrays and pointers. N dimensional arrays are made up of (N-1) dimensional arrays.

arr2D is made up of a 3 single arrays that contains 3 integers each .

The name arr2D refers to the beginning of all the 3 arrays. *arr2D refers to the start of the first 1D array (of 3 integers) that is the same address as arr2D. So the expression (arr2D == *arr2D) is true (1).

Similarly, *arr2D is nothing but *(arr2D + 0), adding a zero doesn’t change the value/meaning. Again arr2D[0] is the another way of telling *(arr2D + 0). So the expression (*(arr2D + 0) == arr2D[0]) is true (1).

Since both parts of the expression evaluates to true the result is true(1) and the same is printed.

[image: image1.png]

arr2D[3]

arr2D[2]

arr2D[1]

arr2D

www.Technicalsymposium.com

