Subscribe & Get All Fresher Jobs Information & Study Materials PDF and Projects- Free Download
Data Structure Programs PDF
Pointers in C
Tech Interview in Datastructure
Data Structure Programming & Projects PDF- Free Download
DataStructure-Program for matrix operations dertminant, singular.
#include <stdio.h> #include <conio.h> #include <math.h> #define MAX 3 void matrix ( int [3][3] ) ; void create ( int [3][3] ) ; void display ( int [3][3] ) ; void matmul ( int [3][3], int [3][3], int [3][3] ) ; void transpose ( int [3][3], int [3][3] ) ; int determinant ( int [3][3] ) ; int isortho ( int [3][3] ) ; void main( ) { int mat [3][3], d ; clrscr( ) ; printf ( "\nEnter elements for array: \n\n" ) ; create ( mat ) ; printf ( "\nThe Matrix: \n" ) ; display ( mat ) ; d = determinant ( mat ) ; printf ( "\nThe determinant for given matrix: %d.\n", d ) ; if ( d == 0 ) printf ( "\nMatrix is singular.\n" ) ; else printf ( "\nMatrix is not singular.\n" ) ; d = isortho ( mat ) ; if ( d != 0 ) printf ( "\nMatrix is orthogonal.\n" ) ; else printf ( "\nMatrix is not orthogonal.\n" ) ; getch( ) ; } /* initializes the matrix mat with 0 */ void matrix ( int mat[3][3] ) { int i, j ; for ( i = 0 ; i < MAX ; i++ ) { for ( j = 0 ; j < MAX ; j++ ) mat[i][j] = 0 ; } } /* creates matrix mat */ void create ( int mat[3][3] ) { int n, i, j ; for ( i = 0 ; i < MAX ; i++ ) { for ( j = 0 ; j < MAX ; j++ ) { printf ( "Enter the element: " ) ; scanf ( "%d", &n ) ; mat[i][j] = n ; } } } /* displays the contents of matrix */ void display ( int mat[3][3] ) { int i, j ; for ( i = 0 ; i < MAX ; i++ ) { for ( j = 0 ; j < MAX ; j++ ) printf ( "%d\t", mat[i][j] ) ; printf ( "\n" ) ; } } /* multiplies two matrices */ void matmul ( int mat1[3][3], int mat2[3][3], int mat3[3][3] ) { int i, j, k ; for ( k = 0 ; k < MAX ; k++ ) { for ( i = 0 ; i < MAX ; i++ ) { mat3[k][i] = 0 ; for ( j = 0 ; j < MAX ; j++ ) mat3[k][i] += mat1[k][j] * mat2[j][i] ; } } } /* obtains transpose of matrix m1 */ void transpose ( int mat[3][3], int m[3][3] ) { int i, j ; for ( i = 0 ; i < MAX ; i++ ) { for ( j = 0 ; j < MAX ; j++ ) m[i][j] = mat[j][i] ; } } /* finds the determinant value for given matrix */ int determinant( int mat[3][3] ) { int sum, i, j, k, p ; sum = 0 ; j = 1 ; k = MAX - 1 ; for ( i = 0 ; i < MAX ; i++ ) { p = pow ( -1, i ) ; if ( i == MAX - 1 ) k = 1 ; sum = sum + ( mat[0][i] * ( mat[1][j] * mat[2][k] - mat[2][j] * mat[1][k] ) ) * p ; j = 0 ; } return sum ; } /* checks if given matrix is an orthogonal matrix */ int isortho ( int mat[3][3] ) { /* transpose the matrix */ int m1[3][3], m2[3][3], i ; transpose ( mat, m1 ) ; /* multiply the matrix with its transpose */ matmul ( mat, m1, m2 ) ; /* check for the identity matrix */ for ( i = 0 ; i < MAX ; i++ ) { if ( m2[i][i] == 1 ) continue ; else break ; } if ( i == MAX ) return 1 ; else return 0 ; }
Download All Data Structure Study Materials & ebook PDF