PROGRAMME EDUCATIONAL OBJECTIVES (PEO)
1. The graduates acquire ability to create mathematical model, design, analysis and synthesis the system integration based on the knowledge of mechanical, electrical, electronic, control, computer, communication, fluid and other engineering domains.
2. The graduates use their talent, self-confidence, knowledge and engineering practice which facilitate them to pursue position of scientific and/or managerial leadership in their career paths.
3. The graduates apply their consciousness of moral, professional responsibilities and motivation to practice life-long learning in a team work environment.

PROGRAMME OUTCOMES (PO)
1. Graduate will demonstrate strong basics in mechanics and its design, electronics engineering serves the foundation for the Programme.
2. Graduate will be familiar about the importance of the sensors, signal conditioning, and control system design for the appropriate use of mechatronic system developments.
3. Graduate able to demonstrate the effective use of actuators and its elements for the generation, control and conversion of energy for the typical automation.
4. Graduate able to develop the mechatronic systems by the integration of mechanical, electrical, electronics, fluid, and other multidisciplinary systems.
5. Graduate able to build the real time automation system within realistic constraints such as industrial, economic, environmental, ethical, social, health and safety.
6. Graduate will become familiar with modern automation tools and such as incorporating robots and vision based intelligence automation.
7. Graduate will acquire the capability to identify, formulate and solve engineering problems related to mechatronic systems.
8. Graduate will has an understanding of social, professional and ethical responsibility when developing automated system.
9. Graduate will be able to communicate effectively both in verbal and nonverbal forms.
10. Graduate will be trained towards developing and understanding the impact of development of mechatronics system on global, economic, environmental and societal context.
11. Graduate will be capable of understanding the value for life-long learning and motivating them to involve the research works.
12. Graduate will be able to design and develop innovative/ manufacturable / marketable / environmental friendly systems useful to the nation and the society.
13. Graduate will be able to emerge as a successful entrepreneur.
Mapping of PEOs with POs

<table>
<thead>
<tr>
<th>Programme Educational Objectives</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>I</td>
<td>✓</td>
</tr>
<tr>
<td>II</td>
<td>✓</td>
</tr>
<tr>
<td>III</td>
<td>✓</td>
</tr>
<tr>
<td>Year 1</td>
<td>SEM 1</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEM 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>SEM 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEM 4</td>
</tr>
</tbody>
</table>
SEMESTER I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MR5101</td>
<td>Concepts in Electronics Engineering or</td>
<td>FC</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MR5102</td>
<td>Concepts of Machines and Mechanisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>MA5156</td>
<td>Applied Mathematics for Engineers</td>
<td>FC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>MR5103</td>
<td>Sensors and Signal Conditioning</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>MR5104</td>
<td>Control System Design</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>MR5105</td>
<td>Microcontroller and PLC</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective – I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>MR5111</td>
<td>Modeling, Simulation and Analysis Laboratory</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>28</td>
<td>18</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MR5251</td>
<td>Design of Machine Elements and Product Developments</td>
<td>FC</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MR5252</td>
<td>Mechatronics System Design</td>
<td>FC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>MR5201</td>
<td>Machine Vision</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MR5202</td>
<td>Drives and Actuators for Automation</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective – II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective – III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>MR5211</td>
<td>Microcontroller Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>MR5212</td>
<td>Machine Vision Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>MR5213</td>
<td>Technical Seminar</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>35</td>
<td>18</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MR5391</td>
<td>Industrial Robotics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective - IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective - V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>MR5311</td>
<td>Project Work Phase I</td>
<td>EEC</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>21</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MR5411</td>
<td>Project Work Phase II</td>
<td>EEC</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = (22 + 26 + 15 + 12) = 75
FOUNDATION COURSES (FC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MR5101</td>
<td>Concepts in Electronics Engineering</td>
<td>FC</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MR5102</td>
<td>Concepts of Machines and Mechanisms</td>
<td>FC</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MA5156</td>
<td>Applied Mathematics for Engineers</td>
<td>FC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>MR5251</td>
<td>Design of Machine Elements and Product Developments</td>
<td>FC</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>MR5252</td>
<td>Mechatronics System Design</td>
<td>FC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MR5103</td>
<td>Sensors and Signal Conditioning</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MR5104</td>
<td>Control System Design</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>MR5105</td>
<td>Microcontroller and PLC</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MR5111</td>
<td>Modeling, Simulation and Analysis Laboratory</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>MR5201</td>
<td>Machine Vision</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MR5202</td>
<td>Drives and Actuators for Automation</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>MR5211</td>
<td>Microcontroller Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>MR5212</td>
<td>Machine Vision Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>MR5391</td>
<td>Industrial Robotics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Professional Electives (PE)

Semester I (Elective I)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MR5001</td>
<td>Nonlinear Systems Dynamics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MR5002</td>
<td>Computer Aided Inspection</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MR5003</td>
<td>Digital Manufacturing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MR5004</td>
<td>Modeling and Finite Element Analysis of Electromechanical Systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MR5005</td>
<td>Computer Aided Production and Automation of Plants</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester II (Elective II & III)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MR5006</td>
<td>Micro and Nano Systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MR5007</td>
<td>Embedded Systems with Advanced Microcontrollers</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PD5091</td>
<td>Product Lifecycle Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MR5008</td>
<td>Human Machine Interface</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MR5009</td>
<td>Machine Learning</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MR5010</td>
<td>Haptics and Augmented Reality</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MR5011</td>
<td>Communication Protocols</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>MR5012</td>
<td>Solid State Drives</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>CM5071</td>
<td>Intelligent Product Design and Manufacturing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester III (Elective IV & V)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MF5075</td>
<td>Industrial Safety</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MR5013</td>
<td>Industrial Automation for Mechatronics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MR5014</td>
<td>Advanced Control Systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CP5292</td>
<td>Internet of Things</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MR5015</td>
<td>Biomechatronics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MR5016</td>
<td>Advanced Computer Vision</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MR5017</td>
<td>Onboard Computers and Programming</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>MR5018</td>
<td>Automotive Electronics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>MR5019</td>
<td>Marine Mechatronics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>MR5020</td>
<td>Avionics for Mechatronics Engineers</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>MR5021</td>
<td>Medical Mechatronics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>MF5074</td>
<td>Entrepreneurship Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>CM5092</td>
<td>Environment Conscious Manufacturing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>CM5073</td>
<td>Green Manufacturing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Employability Enhancement Courses (EEC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MR5213</td>
<td>Technical Seminar</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>MR5311</td>
<td>Project Work – Phase I</td>
<td>EEC</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>MR5411</td>
<td>Project Work - Phase II</td>
<td>EEC</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>
OBJECTIVES:

- To understand the basics and working principles of electronic components and their applications.

UNIT I ELECTRONIC COMPONENTS AND DEVICES 7
Resistors, capacitors, inductors, transformers – types and properties - junction diodes, zener diodes, transistors and thyristors - types-operating mechanism-characteristics and applications.
LED – characteristics and applications

UNIT II OPERATIONAL AMPLIFIERS AND APPLICATIONS 7
Operational amplifiers – principles, specifications, characteristics and applications- arithmetic operations, integrator, differentiator, comparator, schmitt trigger, instrumentation amplifiers, active filters, linear rectifiers, waveform generators, A/D converters, feedback and power amplifiers, sine wave oscillators

UNIT III DIGITAL ELECTRONICS 6

UNIT IV MEASURING INSTRUMENTS 5

UNIT V POWER MANAGEMENT 5
Pulse width modulation and pulse position modulation – batteries–SMPS - sensors, actuators and controllers energy consumption -power optimization of integrated system.

TOTAL : 30 PERIODS

OUTCOMES:
This course is intended for learning the fundamentals and applications of Electronic Components, Devices, analog circuits, digital circuits, test and measuring instruments. Further, students will learn to develop customized electronics components for mechatronic applications.

REFERENCES
LABORATORY

OBJECTIVES:
- To give hands on experience on basic electronics unit developments for the mechanical stream students.

LIST OF EXPERIMENTS
2. Experimentation with CRO.
3. Design of DC power supplies
4. Design of inverting amplifier and non-inverting amplifiers
5. Design of Instrumentation amplifier.
7. Design of combinational circuits and sequential circuits.
9. RC Servo motor driver circuit.
10. Design of stepper motor driver circuit.

TOTAL: 30 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- The laboratory experiments provides a hands on experience onboard electronics developments particularly the students come from mechanical stream.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. CRO-1
2. DSO-1
3. DC Power supply
 5V - 5 No’s
 12V, 10A - 1 No
 24V, 10A or higher - 1 No
4. Function generator-1
5. OP-Amp trainer kit (inverting and non-inverting amplifier module)
6. Analog filters trainer kit
7. Sequential circuit trainer kit
8. Combination circuit trainer kit
9. A/D Converter trainer kit -1 No
10. D/AConverter Trainer kit-1 No
11. Driver Circuit Module for servomotor-1 No
12. Driver Circuit module for stepper motor-1 No
13. Multi-Meter, bread board, and solder machine.
14. Electronic components for power supply (transformer, regulator, diode, capacitors) -5 No’s
OBJECTIVES:
- To impart knowledge of basic mechanical engineering to the students.

UNIT I MECHANISMS

UNIT II FRICTION

UNIT III GEARING AND CAMS
Gear profile and geometry-nomenclature of spur and helical gears – law of gearing – interference requirement of minimum number of teeth in gears-gear trains-simple and compound gear trains determination of speed and torque in epicyclic gear trains-Cam profile-different types of followers.

UNIT IV VIBRATION

UNIT V MACHINE TOOLS

TOTAL : 60 PERIODS

OUTCOMES:
- The students will understand the concepts, design, construction and properties of mechanical elements and machines.

REFERENCES
OBJECTIVES:
This course is designed to enrich the knowledge in various advanced mathematical techniques such as matrix theory, calculus of variations, probability and random variables, Laplace transforms and Fourier transforms. The fundamental concepts in these areas will be more useful for the students to model the engineering problems and solving them by applying these methods.

UNIT I MATRIX THEORY 12
The Cholesky decomposition - Generalized Eigenvectors - Canonical basis - QR factorization - Least squares method - Singular value decomposition.

UNIT II CALCULUS OF VARIATIONS 12
Concept of variation and its properties – Euler’s equation – Functional dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems - Direct methods : Ritz and Kantorovich methods.

UNIT III PROBABILITY AND RANDOM VARIABLES 12

UNIT IV LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS 12

UNIT V FOURIER TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS 12

OUTCOMES:
After completing this course, students should demonstrate competency in the following skills:
- Apply various methods in matrix theory to solve system of linear equations.
- Maximizing and minimizing the functional that occur in various branches of engineering disciplines.
- Computation of probability and moments, standard distributions of discrete and continuous random variables and functions of a random variable.
- Application of Laplace and Fourier transforms to initial value, initial–boundary value and boundary value problems in Partial Differential Equations.

TOTAL : 60 PERIODS
REFERENCES:

MR5103 SENSORS AND SIGNAL CONDITIONING L T P C
3 0 2 4

OBJECTIVES:
- To learn the various types of sensors, transducers and signal conditioning circuits for Mechatronics system development

UNIT I INTRODUCTION

UNIT II MOTION, PROXIMITY AND RANGING SENSORS

UNIT III FORCE, MAGNETIC AND HEADING SENSORS

UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS
Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric, Temperature – IC, Thermistor, RTD, Thermocouple.

UNIT V SIGNAL CONDITIONING

TOTAL: L=45+P(30)=75 PERIODS

OUTCOMES:
- The students will learn the principles of various sensors and transducers and also able to study the characteristics of sensors.
REFERENCES

LAB COMPONENT

OBJECTIVES:
- To learn and gather the practical experience on sensors and its measurements for mechatronics system development.

LIST OF EXPERIMENTS
1. Study on various kinds of sensors and its characteristics.
2. Study on signal conditioning units.
3. Experimentation on voltage, current, power, and frequency measurement.
4. Strain gage, load cell and torque transducer characterization & applications – data acquisition & instrument control.
5. Experimentation with tactile sensor for force and touch detection.
6. LVDT, acoustics ranging, Hall Effect sensor and ultrasonic distance measurement applications.
8. Study on eddy current sensor for thickness measurement.
9. Study on ultrasonic sensors for material fault diagnosis.
10. Experimentation on laser sensor for non-contact dimension measurement.
11. Study on Experimentation with Gyroscope, Accelerometer and magnetometer.
12. Experimentation with speed and position measurement using encoders.

TOTAL: 30 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- Students able to come with suitable sensor selection for the mechatronics system development based on the laboratory experience.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Temperature Sensors (RTD, Thermocouple, Thermistor, & IC Temperature sensor)- 1 in Each
2. Optical sensors (Photovoltaic, Photo Conductive, Photo Transistor, & Photo Diode) - 1 in Each
3. Strain Gauge Trainer – 1 No’s
4. Load cell Trainer – 1 No’s
5. Torque Transducer Trainer – 1 No’s
6. LVDT, Acoustics Ranging and Hall Effect Trainer – 1 No’s on Each
7. Pressure sensor, ultrasonic sensor Trainer – 1 No’s on Each
8. Proximity sensor (Eddy current, optical, inductive, capacitive principle) – 1 No’s on Each
9. Gyroscope, Accelerometer and Magnetometer Trainer – 1 No’s on Each
10. Encoders (Absolute, incremental) – 1 No’s on Each
11. Tactile sensor (force and touch) Trainer – 1 No
12. DAQ card – 5 No
13. PC – 5

<table>
<thead>
<tr>
<th>MR5104</th>
<th>CONTROL SYSTEM DESIGN</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To understand dynamics, design and analysis of control systems to meet the desired specifications.

UNIT I SYSTEM REPRESENTATION AND MODELLING

UNIT II DESIGN OF FEEDBACK CONTROL SYSTEM

UNIT III TIME AND FREQUENCY DOMAIN ANALYSIS

UNIT IV CONTROL SYSTEM DESIGN
Root locus approach to control system design – lead, lag, lag-lead compensation using time domain analysis. control system design using frequency domain analysis - lead, lag, lag-lead compensation using frequency domain analysis- P, PI, and PID controllers – tuning methods and rule.

UNIT V CONTROL AND ANALYSIS OF SERVO MOTOR

L=45+P(30)=75 PERIODS
OUTCOMES:
• The students will know the various types of control systems and their modelling, with reference to mode controls, and determination of stability in time and frequency domain.

REFERENCES

LABORATORY L T P C
0 0 2 0

OBJECTIVES:
• To study the classical concepts behind the control system design for various systems in both time and frequency domain.

LIST OF EXPERIMENTS
1. Series, cascaded, feedback system modelling.
2. State space modeling
3. Study on time domain representation and specifications
4. Study on Routh-Hurwitz criterion and Root locus techniques
5. Study on frequency domain representation and specifications
6. Bode plot and polar plot technique
7. Study on tuning and finding of controller gain using combination of PID controllers.
8. Study on velocity vs. torque control.
9. Study on position vs. torque control.
10. Study on various motion control systems

TOTAL: 30 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
• The outcome of this laboratory is to create familiarization with control system design for various systems.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. MATLAB/ SCILAB – Control System Tool Box with - 15 No’s
2. Motion control PLC with motor, load setup and feedback setup-1
MR5105 MICROCONTROLLER AND PLC (PROGRAMMABLE LOGIC CONTROLLERS)

OBJECTIVES:
This course is intended for learning the Introduction and Architecture of Microcontroller, Fundamentals of Assembly language Programming, Programming of Microcontroller and Interfacing of Microcontroller. This course is also gives the ideas of Fundamentals. Architecture and Operations of programmable logic controller, Problem solving using logic ladder diagrams and communication in PLCs.

UNIT I INTRODUCTION TO MICRO CONTROLLER
Microprocessors and Microcontrollers – CISC and RISC - Fundamentals of Assembly language Programming – Instruction to Assembler – C Programming for Microcontrollers – Compiler and IDE – Introduction to Embedded systems - Architecture 8051 family - PIC 18FXXX – family – Memory organization

UNIT II PROGRAMMING OF 8051 MICROCONTROLLER
Instruction set – Addressing modes – I/O Programming-Timer/Counter - Interrupts – Serial communication of 8051.

UNIT III PROGRAMMING OF PIC18FXXX MICROCONTROLLER
Instruction set – Addressing modes – I/O Programming-Timer/Counter - Interrupts – Serial communication, CCP, ECCP PWM programming of PIC18FXXX.

UNIT IV PERIPHERAL INTERFACING
Interfacing of Relays, Memory, key board, Displays – Alphanumeric and Graphic, RTC, ADC and DAC, Stepper motors and DC Motors, I^2C, SPI with 8051 and PIC family

UNIT V PLC PROGRAMMING

TOTAL : 45 PERIODS

REFERENCES
OBJECTIVES:
- To learn the drawing, modeling, simulation and assembly of machines and its components.

LIST OF EXPERIMENTS

1. 2D modeling and 3D modeling of components such as
 - Bearing.
 - Couplings.
 - Ball screw.
 - Gears.
 - Sheet metal components
 - Jigs, fixtures and die.
 - Structures and frames

2. Modeling and simulation of mechanism
 - 4 Bar chain
 - Slider crank,
 - Ball and screw,
 - Rack and pinion.
 - Belt and chain drives.
 - Quick return and elliptical trammel.

3. Assembly and simulation of system
 - Serial manipulators
 - Automotive systems
 - Manufacturing machineries

4. Analysis of mechanical components
 - Introduction to FEA packages.
 - Machine elements (link, gear, joints) under static loads and dynamic loads.

TOTAL: 30 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- The computer aided modeling and simulation laboratory will give the hands on experience on modeling the mechanical structure and its elements and also it delivers the Assembly and simulation of Machine and mechanisms.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
PC with Solidworks & FEA packages -15 No's
OBJECTIVES:
- To impart the knowledge in the design of machine elements and product design used in mechatronics systems.

UNIT I INTRODUCTION
Introduction to national and international symbols- Engineering materials and their physical properties and applied to design- Selection of materials- selection for new design and material considerations-Factors of safety in design- Dimensioning and detailing- Fitness and tolerance-Surface finish and machining symbols –Product development- Elementary concept of functional, aesthetic and form design- Principles of design optimization- Future trends- CAD.

UNIT II STATIC AND VARIABLE STRESSES
Static and variable loading in machine elements- Stress concentration- Goodmen and soderberg method of design- Design of power transmission shafts- Subjected to torsion, bending and axial loads- Design of close coiled helical spring -Design of couplings- Muff, Flange, Bushed and pin types.

UNIT III DESIGN OF TRANSMISSION ELEMENTS

UNIT IV PRODUCT DESIGN AND DEVELOPMENT
Quality function development (QFD) - product design and specification, design for manufacturability (DFM), design for assembly and disassembly, human factors in design ergonomics, creativity in design, TRIZ - axiomatic design.

UNIT V FINITE ELEMENT ANALYSIS
Basic Concept of FEA - finite element analysis of one dimensional and two dimensional problems-variational formulation of B.V.P. – Ritz Method-Examples related to one-dimensional and two-dimensional problems.

OUTCOMES:
- The students will learn the design of machine elements, product design concepts and introduction to finite element analysis.

REFERENCES
OBJECTIVES:
- To impart through knowledge in system modelling, system identification and simulation of mechatronic system.

UNIT I INTRODUCTION
Mechatronics system overview – recent advancements – application – key elements – mechatronics system design process.

UNIT II MODELING OF SYSTEM

UNIT III SIMULATION

UNIT IV DESIGN OPTIMIZATION
Optimization – problem formulation - constraints – over view of linear and nonlinear programming techniques – other optimization techniques- optimal design of mechatronics system with case studies.

UNIT V CASE STUDIES ON BUILDING A MECHATRONICS SYSTEM
Modeling and simulation of automotive system - power window, engine timing, building clutch look up - antilock braking system ABS and automatic transmission controller - modeling of stewart platform with actuators.

OUTCOMES:
The students will gain the basic system modeling, simulation and design optimization for mechatronics systems developments.

REFERENCES
OBJECTIVES:
- To learn the system design and its integration for modeling the mechatronics systems.

LIST OF EXPERIMENTS
1. Modeling of various types of electrical motors and with gear train.
 - Power window.
 - Engine timing.
 - Building clutch look up.
 - Antilock braking system ABS.
 - Automatic transmission controller.
5. Modeling and Simulation of mobile robot.
7. Modeling of conveyor and object sorting system using various sensors.
8. Modeling of quadcopter.

TOTAL: 30 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- The students will acquire the hands on experience in design, modeling and simulation of mechatronic system.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Adam’s Software and MATLAB software packages are to be used to carryout the listed experiments.
OBJECTIVES:
- To impart knowledge on imaging machine vision and its applications.

UNIT I INTRODUCTION
Human vision – Machine vision and Computer vision – Benefits of machine vision – Block diagram and function of machine vision system implementation of industrial machine vision system – Physics of Light – Interactions of light – Refraction at a spherical surface – Thin Lens Equation

UNIT II IMAGE ACQUISITION

UNIT III IMAGE PROCESSING

UNIT IV IMAGE ANALYSIS

UNIT V MACHINE VISION APPLICATIONS
Machine vision applications in manufacturing, electronics, printing, pharmaceutical, textile, applications in non-visible spectrum, metrology and gauging, OCR and OCV, vision guided robotics – Field and Service Applications – Agricultural, and Bio medical field, augmented reality, surveillance, bio-metrics.

TOTAL : 45 PERIODS

OUTCOMES:
- The outcome of this course is to apply the vision concepts in various mechatronics applications.

REFERENCES
OBJECTIVES:
- To impart knowledge in the area of hydraulic, pneumatic electric actuators and their control.

UNIT I FLUID POWER SYSTEM GENERATION AND ACTUATORS 9

UNIT II CONTROL AND REGULATION ELEMENTS 9
Control and regulation Elements—Direction, flow and pressure control valves--Methods of actuation, types, sizing of ports. Spool valves-operating characteristics-electro hydraulic servo valves-Different types-characteristics and performance

UNIT III CIRCUIT DESIGN FOR HYDRAULIC AND PNEUMATICS 9
Typical Design methods – sequencing circuits design - combinational logic circuit design-cascade method - Karnaugh map method- Electrical control of pneumatic and hydraulic circuits-use of relays, timers, counters, Programmable logic control of Hydraulics Pneumatics circuits, PLC ladder diagram for various circuits, motion controllers, use of field busses in circuits.

UNIT IV ELECTRICAL ACTUATORS 9
D.C Motor-Working principle, classification, characteristics, Merits and Demerits, Applications- AC Motor- Working principle, Types, Speed torque characteristics, Merits and demerits, Applications Stepper motor- principle,classification, construction. Piezo electric actuators – Linear actuators Hybrid actuators – Applications

UNIT V ELECTRICAL DRIVE CIRCUITS 9

OUTCOMES:
The students able to familiar with basic concepts of hydraulic, pneumatics and electric drives and their controlling elements and also gather the knowledge on designing the hydraulic and pneumatic circuits using ladder diagram.

REFERENCES
OBJECTIVES:
- To study the functional aspects of different pneumatic and hydraulic Components and its use in circuits and also to train the student in designing different pneumatic and hydraulic circuits for different applications.

LIST OF EXPERIMENTS

Hydraulic and Pneumatic Drives
1. Simulation of speed control circuits in a hydraulic trainer.
2. Simulation of hydraulic circuits in a hydraulic trainer.
3. Simulation of single and double acting cylinder circuits using different directional control values.
4. One shot and regenerative pneumatic circuits.
5. Simulation of ladder logic program.
7. Simulation of logic and electro-pneumatic circuits.
8. Simulation of electro pneumatic sequencing circuits.
9. Simulation of PLC based electro pneumatic sequencing circuits.
10. To design and connect the circuits for the given problem (case study).

Electrical Drives
1. Speed and torque characterization and control of DC motors.
2. Speed and Torque characterization and control of AC motors.
3. Speed and torque characterization and sequence control of stepper motor
4. Electrical energy planning and management of autonomous system.
5. Closed loop position and velocity control of a DC servo motor.
6. Tuning of P, PI and PID controller using simulation software.

TOTAL: 30 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- The outcome of this laboratory is to create familiarization with fluid power drives and its electronic control for automation application.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Hydraulic Trainer with Pump and Valves
2. Pneumatic Trainer with Compressor and Valves
3. Electro Pneumatic Trainer
4. Electro Hydraulic Trainer
5. Hydraulics and Pneumatics Simulation Software
6. System Controlled DCMotor with Feedback Setup
7. System Controlled ACMotor with Feedback Setup
8. System Controlled Stepper Motor Setup
9. MATLAB/SCILAB/ any other Software for Controller Tuning.
10. PC-7
OBJECTIVES:
- To introduce and train the students to use microcontroller for actuation and control of speed

LIST OF EXPERIMENTS

1. Assembly language programming and simulation of 8051 in Keil IDE.
3. Sensor interfacing with ADC to X8051 & PIC.
4. DAC & RTC interfacing to X8051 & PIC.
5. Timer, Counter and Interrupt program application for X8051 and PIC.
6. Step motor (unipolar & bipolar motor) and PWM servo motor control to interfacing with X8051.
7. UART serial programming in X8051 and PIC.
8. PC Interfacing of stepper motor - Unipolar & Bipolar.
12. Serial communication of ARM processor with computation platform.
13. Programming on single board computers for sensor and actuator interface.
14. Programming on communication and control between single board computers for machine to machine communication.

TOTAL: 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- To use microcontroller and other processor to control different motors like DC motor, stepper motor, servo motor etc.,

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. 8051 Microcontroller Trainer Kit with Software-3 No’s
2. PIC Trainer Kit with Software -3 No’s
3. ARM 7 Trainer Kit with Software - 3 No’s
4. Single Board Computer Evaluation Board with Software -3 No’s
5. Computers- 12 No’s
6. ADC interface - 3
7. Servomotor – 3 no’s
8. Stepper motor -3 no’s
OBJECTIVES:
- To gather the practical exposure on machine vision elements, lighting technique, processing softwares and algorithms

LIST OF EXPERIMENTS
1. Study on different kinds of vision sensors.
2. Study on lighting techniques for machine vision.
4. Experimentation on image acquisition towards the computation platform.
5. Pre-processing techniques in image processing.
6. Edge detection and region of interest extraction.
7. Experimentation with image processing algorithm for feature extraction.
8. Experimentation with pattern recognition.
10. Vision based Gear parameter measurement.

TOTAL: 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- The students will acquire the hands on experience in machine vision techniques.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. CMOS Camera (USB/Ethernet) - 1 No
2. CCD Camera (USB/Ethernet) - 1 No
3. Standard Boom Stand (Bench top setup) - 2 No's
4. Extension Tube (5mm to 50mm) - 2 No's
5. Lenses (between 3mm to 50mm focal length) - 2 No's
6. Tele-centric lens - 1 No
7. Lighting (Coaxial, ring lighting, Diffused, backlighting) - 1 No Each.
8. Machine vision software - 2 No's
9. PC - 2 No's

MR5391 INDUSTRIAL ROBOTICS

OBJECTIVE:
- To teach students the basics of robotics, construction features, sensor applications, robot cell design, robot programming and application of artificial intelligence and expert systems in robotics.

UNIT I INTRODUCTION AND ROBOT KINEMATICS
UNIT II ROBOT DRIVES AND CONTROL

UNIT III ROBOT SENSORS

UNIT IV ROBOT CELL DESIGN AND APPLICATION

UNIT V ROBOT PROGRAMMING, ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

TOTAL: 45 PERIODS

OUTCOME:
The student will be able to design robots and robotic work cells and write program for controlling the robots. The student will be able to apply artificial intelligence and expert systems in robotics.

REFERENCES
OBJECTIVES:
- To impart through knowledge in basic and advance multi body mechanical system dynamics and its mathematical preliminaries.

UNIT I INTRODUCTION TO DYNAMICS

UNIT II COMPUTATIONAL METHODS FOR DYNAMIC ANALYSIS

UNIT III NONLINEAR SYSTEMS AND CONCEPTS

UNIT IV SYSTEM CHARACTERIZATION
Stability, controllability, observability - Phase Plane Analysis- Phase Portrait- Limit Cycle- Describing Function- Assumption – Limit Cycles

UNIT V CONTROL OF NONLINEAR MECHANICAL SYSTEMS
Double inverted pendulum – nonlinear machineries – robot- suspension system- aircraft.

OUTCOMES:
- On successful completion of this course, all students will have ability to understand and analysis the multi-body system dynamics for mechanical systems.
- Students able to develop an equation and able to understand the behaviour of the nonlinear systems.

REFERENCES
MR5002 COMPUTER AIDED INSPECTION L T P C
3 0 0 3

OBJECTIVES:
- To make the learner to design and fabricate inspection methods and systems incorporating electronic systems for inspection and quality control in engineering.

UNIT I FUNDAMENTALS AND CONCEPTS IN METROLOGY 9
Standards of measurement – Analog and digital measuring instruments-comparators – Limits, Fits and Tolerances – Gauge design – Angular measurements – Surface Roughness – Form errors and measurements.

UNIT II INSPECTION AND GENERAL MEASUREMENTS 12

UNIT III OPTO ELECTRONICS IN ENGINEERING INSPECTION 6
Use of opto electronics in Tool wear measurement – Micro hole measurement and surface Roughness – Applications in In-Process measurement and on line Inspection.

UNIT IV MACHINE VISION 9

UNIT V COORDINATE METROLOGY AND QUALITY CONTROL 9
Co-ordinate measuring machines – Applications and case-studies of CMM in Inspection – Use of Computers in quality control – Control charts – Reliability.

TOTAL : 45 PERIODS

OUTCOMES:
- The students will acquire the knowledge on computer aided inspection of various geometries

REFERENCES

MR5003 DIGITAL MANUFACTURING L T P C
3 0 0 3

OBJECTIVES:
- To explain in detail about the various Mechatronics elements in CNC machines and also programming of CNC machines.
UNIT I INTRODUCTION OF NC, CNC, DNC AND ADAPTIVE CONTROL 6
Classification of machine tools – types, functions and processes - fundamentals of NC and CNC technologies Adaptive control - types, application and benefits - general configuration of adaptive control and function – reasons for process change - practical problems with adaptive control - example for feedback and adaptive control.

UNIT II MECHATRONIC ELEMENTS IN CNC MACHINE TOOLS 9
CNC systems - configuration of the CNC system – interfacing – monitoring – diagnostics - machine data - compensations for machine accuracies - PLC in CNC – PLC programming for CNC, steps in programming and case studies - machine structure -types of loads on CNC machine - guide ways and types - mechanical transmission elements - elements for rotary motion to linear motion - ball screw and types - roller screw and types - rack and pinion - various torque transmission elements - requirements of feed drives and spindle drive.

UNIT III MECHATRONICS ELEMENT IN CNC MEASURING SYSTEM AND TOOLING 9

UNIT IV CNC PROGRAMMING 14

UNIT V TESTING AND MAINTENANCE OF CNC MACHINES 5

TOTAL : 45 PERIODS

OUTCOMES:
The students will learn mechatronics elements, control and programming in CNC machine.

REFERENCES
MR5004 MODELING AND FINITE ELEMENT ANALYSIS OF ELECTROMECHANICAL SYSTEMS L T P C 3 0 0 3

OBJECTIVES:
To equip students with fundamentals of finite element principles so as to enable them to understand the behavior of various finite elements and to be able to select appropriate elements to solve physical and engineering problems with emphasis on structural and thermal engineering applications.

UNIT I INTRODUCTION 6

UNIT II ONE DIMENSIONAL ANALYSIS 10
Steps in FEA – Discretization, function – derivation of element characteristics matrix, shape function, assembly and imposition of boundary conditions – solution and post processing – One dimensional analysis in solid mechanics and heat transfer.

UNIT III SHAPE FUNCTIONS AND HIGHER ORDER FORMULATIONS 10

UNIT IV ANALYSIS OF PRODUCTION PROCESSES 10

UNIT V COMPUTER IMPLEMENTATION 9
Pre Processing, Mesh generation, elements connectivity, boundary conditions, input of material and processing characteristics – Solution and post processing – Overview of application packages such as ANSYS and DEFORM – Development of code for one dimensional analysis and validation.

TOTAL : 45 PERIODS

OUTCOMES:
To equip students with fundamentals of finite element principles so as to enable them to understand the behavior of various finite elements and to be able to select appropriate elements to solve physical and engineering problems with emphasis on structural and thermal engineering applications.
REFERENCES

MR5005 COMPUTER AIDED PRODUCTION AND AUTOMATION OF PLANTS

OBJECTIVES:
- To impart the system development knowledge on automation production and manufacturing system integration in different applications.

UNIT I COMPUTER AIDED PRODUCTION PLANNING

UNIT II AUTOMATED MATERIAL TRANSFER AND STORAGE SYSTEM

UNIT III GROUP TECHNOLOGY AND FLEXIBLE MANUFACTURING SYSTEMS
UNIT IV AUTOMATION SYSTEMS AND ADVANCED MANUFACTURING TECHNOQUES

UNIT V CASE STUDIES

TOTAL : 45 PERIODS

OUTCOMES:

• Students will familiar the automated plant design, material handling, storage, flexible manufacturing technique and advanced manufacturing concepts.

REFERENCES

MR5006 MICRO AND NANO SYSTEMS

OBJECTIVES:

• To inspire the students about the trends in development and synthesizing of micro and nano systems.
• To introduce students the characterization tools required in micro and Nano material synthesis and fabrication.

UNIT I INTRODUCTION TO MICRO AND NANO TECHNOLOGY

Over view of nanotechnology and MEMS - Nano structuring- Nano defects, Nano particles and Nano layers-science and synthesis of Nano materials-lithography-based micromachining-Photolithography, vacuum systems, etching methods, deposition methods, and process integration -LIGA and laser-assisted processing
UNIT II CHARACTERIZATION OF NANO MATERIALS

UNIT III MICRO AND NANO SENSORS

UNIT IV MICRO AND NANO ACTUATORS

UNIT V MICRO AND NANO SYSTEM

TOTAL : 45 PERIODS

OUTCOMES:

- The students exposed to the evolution of micro- Nano systems elements and fabrication technique.
- The Students aware a characterization tools for synthesizing materials for micro and nano sensors, devices and actuators and its fabrication technique.

REFERENCES
<table>
<thead>
<tr>
<th>MR5007</th>
<th>EMBEDDED SYSTEMS WITH ADVANCED MICROCONTROLLERS</th>
<th>3 0 0 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• To impart knowledge in the area of real time embedded system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• To understand the ARM & FPGA Processor, high level language descriptions of software for embedded system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIT I</td>
<td>INTRODUCTION TO EMBEDDED SYSTEMS AND ARM 9 CORE</td>
<td>10</td>
</tr>
<tr>
<td>UNIT II</td>
<td>PROGRAMMING OF ARM PROCESSOR</td>
<td>8</td>
</tr>
<tr>
<td>UNIT III</td>
<td>INTRODUCTION TO FPGA</td>
<td>9</td>
</tr>
<tr>
<td>UNIT IV</td>
<td>PROGRAMMING OF FPGA</td>
<td>9</td>
</tr>
<tr>
<td>Introduction to Verilog HDL and FPGA Design flow with using Verilog HDL - FPGA Arithmetic Circuits - FPGAs in DSP Applications - Design of SDRAM & Halftone Pixel Converter - Programming FPGAs. Introduction to DSP processor - TMS320C54x and TMS320C6x architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIT V</td>
<td>APPLICATIONS OF ARM 9 AND FPGA CONTROLLERS</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>45 PERIODS</td>
<td></td>
</tr>
</tbody>
</table>

OUTCOMES:
• The students learn to develop the controller for the real time application.
• The students will gather the knowledge for the effective use of advanced controllers and its programming in real time product development.
REFERENCES

PD5091 PRODUCT LIFECYCLE MANAGEMENT

OBJECTIVE:
To understand history, concepts and terminology of PLM
To understand functions and features of PLM/PDM
To understand different modules offered in commercial PLM/PDM tools
To understand PLM/PDM implementation approaches
To understand integration of PLM/PDM with other applications

UNIT I HISTORY, CONCEPTS AND TERMINOLOGY OF PLM
Introduction to PLM, Need for PLM, opportunities of PLM, Different views of PLM - Engineering Data Management (EDM), Product Data Management (PDM), Collaborative Product Definition Management (cPdm), Collaborative Product Commerce (CPC), Product Lifecycle Management (PLM), PLM/PDM Infrastructure – Network and Communications, Data Management, Heterogeneous data sources and applications.

UNIT II PLM/PDM FUNCTIONS AND FEATURES

UNIT III DETAILS OF MODULES IN A PDM/PLM SOFTWARE
Case studies based on top few commercial PLM/PDM tools

UNIT IV ROLE OF PLM IN INDUSTRIES
Case studies on PLM selection and implementation (like auto, aero, electronic) - other possible sectors, PLM visioning, PLM strategy, PLM feasibility study, change management for PLM, financial justification of PLM, barriers to PLM implementation, ten step approach to PLM, benefits of PLM for–business, organisation, users, product or service, process performance.

UNIT V BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM SOFTWARE
PLM Customization, use of EAI technology (Middleware), Integration with legacy data base, CAD, SLM and ERP

TOTAL: 45 PERIODS
OUTCOMES:
The students will be able to
- Understand history, concepts and terminology of PLM.
- Apply the functions and features of PLM/PDM.
- Understand different modules offered in commercial PLM/PDM tools.
- Understand PLM/PDM implementation approaches.
- Integrate PLM/PDM with other applications.
- Analyse the case studies.

REFERENCES

MR5008 HUMAN MACHINE INTERFACE

OBJECTIVES:
- The students gain insight into the field of human-computer interaction

UNIT I INTRODUCTION TO HMI
HMI Basics - Human Computer Interaction as an emerging field - Applications of Human Machine Interface (HMI) - HMI types - Human Information Processing - Interaction styles and general design - Interaction metaphors and conceptual models - HCI and the World Wide Web - Accessibility of User Interfaces - Usability engineering and evaluation - HCI and social computing.

UNIT II ELEMENTS OF HMI

UNIT III PERCEPTION, MEMORY, COGNITION

UNIT IV INTEGRATED MODELING FRAMEWORK
UNIT V BRAIN COMPUTER INTERFACE

OUTCOMES:
• The students gather the ideas about the human machine and brain computer interface for the advanced mechatronics system development.

REFERENCES

MR5009 MACHINE LEARNING L T P C
3 0 0 3

OBJECTIVES:
• To know fundamental behind the various machine algorithms, and also to familiarize the important methods in ANN, Fuzzy and Genetic algorithm.

UNIT I SUPERVISED AND SEMI SUPERVISED LEARNING METHODS

UNIT II UNSUPERVISED & REINFORCEMENT LEARNING METHODS
Expectation–maximization (EM) - Vector quantization, Clustering Fuzzy K &C means algorithm - Density-based spatial clustering of applications with noise (DBSCAN) - Conceptual clustering-Association rule learning - Apriori algorithm- SVD.

UNIT III NEURAL NETWORK
Perceptron – Probabilistic Neural Network (PNN) - Back-Propagation (BPN) - Hopfield Network - Self-Organizing Map (SOM) - Learning Vector Quantization (LVQ)-Adaptive Resonance Theory 1 – Adaptive Resonance Theory 2 - Case studies on GA based algorithm development.

UNIT IV FUZZY CLASSIFICATION
UNIT V GENETIC ALGORITHMS

TOTAL : 45 PERIODS

OUTCOMES:
- The students will gain the knowledge on artificial learning and classification algorithms for the implementation of intelligent machine.

REFERENCES:

MR5010 HAPTICS AND AUGMENTED REALITY L T P C
3 0 0 3

OBJECTIVES:
- To learn the human touch perception and Tactile Proprioception.
- To learn the haptic components and virtual models.
- To emphasize the significance of knowledge on haptic and augmented reality.

UNIT I INTRODUCTION TO HAPTICS
Definition - Importance of Touch - Tactile Proprioception - Tactual Stereo genesis - Kinesthetic Interfaces - Tactile Interfaces - Human Haptics - Overview of existing applications.

UNIT II KINESTHETIC HAPTIC DEVICES

UNIT III TELEOPERATION
UNIT IV HUMAN HAPTICS

UNIT V INTRODUCTION TO HAPTIC PLATFORM

TOTAL : 45 PERIODS

OUTCOMES:
• The students will learn to build and control haptic devices. The students learn the salient properties of human touch perception that are necessary to be recreated in virtual environments.
• The students will gather the knowledge to use the modeling software that used in the Haptics device development.

REFERENCES

MR5011 COMMUNICATION PROTOCOLS

OBJECTIVES:
• To provide practical knowledge in the basic concepts of wired and wireless communication protocol for automation system development and networking.
• To create the knowledge on standard communication protocols for industrial automation.

UNIT I WIRED BUSES AND PROTOCOLS

UNIT II WIRELESS PROTOCOLS
Antenna Technology- Network Topologies - Wireless Local Area Networks (WLAN) - Wireless Personal Area Networks (WPAN) - Wimedia –Wimax - RF – Bluetooth- Wi-Fi – Zigbee – Wireless Industrial Automation
UNIT III INDUSTRIAL AND AUTONOMOUS SYSTEMS WIRED NETWORKS

UNIT IV INDUSTRIAL WIRELESS NETWORKS

UNIT V APPLICATION OF COMMUNICATION PROTOCOLS
Wired machine networking - wireless machine networking – Networking of industry - Communication network layout design- case studies - various automation applications.

TOTAL : 45 PERIODS

OUTCOMES:
Students will gain the knowledge on system communication process in the system and between an industrial networks for automating the simple machine to entire industries.

REFERENCES
1. Dick Caro, Wireless Networks for Industrial Automation, Third Edition,
2. G&L Motion Control, MMC-SD SERCOS Drive, 2005.

MR5012

SOLID STATE DRIVES

OBJECTIVES:
To give the exposure to various switching circuits for electrically operated actuators for the speed, position, direction and breaking task of the automation systems.

UNIT I ELECTRICAL ACUATORS AND DRIVE CHARACTERISTICS

UNIT II SOLID STATE SWITCHING DEVICES
Solid State Relay - Switching Characteristics - Bipolar Junction Transistor (BJT), Metal Oxide Semiconductor - Field Effect Transistor Silicon Controlled Rectifier (SCR) - DIAC-TRIAC- Gate Turn-Off Thyristor (GTO) – Insulated Gate Bipolar Transistor (IGBT) - Classification Of PWM Techniques
UNIT III D.C. MOTOR DRIVES

UNIT IV A.C. MOTOR DRIVES

UNIT V SPECIAL ELECTRICAL MOTOR DRIVES

TOTAL : 45 PERIODS

OUTCOMES:
Student’s able to understand and apply the solid state devices for various electrical actuator for automation applications.

REFERENCES

CM5071 INTELLIGENT PRODUCT DESIGN AND MANUFACTURING
L T P C
3 0 0 3

OBJECTIVE:
To teach the student the principles and practices of intelligent product design and manufacturing

UNIT I INTRODUCTION TO INTELLIGENT DESIGN AND MANUFACTURING
Need - Internet technology and Manufacturing Industry - Digital enterprises - Manufacturing portals – Benefits.

UNIT II TECHNIQUES OF KNOWLEDGE REPRESENTATION

UNIT III INTELLIGENT PRODUCT MODELING TECHNIQUES:
Intelligent CAD systems, integrating product and process design, manufacturing analysis and CAD/CAM integration, design methodology for automated manufacture, the impacts of intelligent process control on product design, and fuzzy knowledge-based controller design.
UNIT IV APPLICATION OF NEURAL NETWORKS: 9
Neural Networks for Intelligent Process Monitoring and Control: Applications to CNC machining, Metal Forming - Intelligent Manufacturing Planning, Scheduling and Control - Intelligent Assembly and Layout Planning.

UNIT V INTERNET BASED COLLABORATIVE CAD/CAM: 9
Applications to web based CAD, CAPP, CNC, Assembly planning, and Rapid Prototyping - Challenging issues of Collaborative CAD/CAM.

TOTAL: 45 PERIODS

OUTCOME:
At the end of this course the student will be able to apply Internet technology in manufacturing Industry and use techniques of Knowledge Representation.

REFERENCES

MF5075 INDUSTRIAL SAFETY

OBJECTIVE:
To develop and strengthen the safety ideas and motivate the students to impart basic safety skills and understandings to run an industry efficiently and effectively.

UNIT I OPERATIONAL SAFETY 9

UNIT II SAFETY APPRAISAL AND ANALYSIS 9
UNIT III OCCUPATIONAL HEALTH

Concept and spectrum of health functional units and activities of operational health service – occupational and related disease – levels of prevention of diseases – notifiable occupational diseases Toxicology Lead – Nickel, chromium and manganese toxicity – gas poisoning (such as CO, Ammonia Chlorise, So2, H2s.) their effects and prevention – effects of ultra violet radiation and infrared radiation on human system.

UNIT IV SAFETY AND HEALTH REGULATIONS

UNIT V SAFETY MANAGEMENT

TOTAL: 45 PERIODS

OUTCOME:
At the end of this course the students are expected to gain knowledge and skills needed to run an industry with utmost safety precautions.

REFERENCES:

MR5013 INDUSTRIAL AUTOMATION FOR MECHATRONICS L T P C
3 0 0 3

OBJECTIVES:
- To impart the knowledge on PLC, Supervisory control and factory automation

UNIT I INDUSTRIAL INSTRUMENTATION AND CONTROL

Introduction and need for automation-Instrumentation system for measurement of process parameters – overview on flow, level, pressure, temperature, speed, current and voltage measurements – proximity and vision based inspection systems – process control systems – continuous and batch process – feedback control system overview.

UNIT II PROGRAMMABLE LOGIC CONTROLLER

UNIT III DATA COMMUNICATION AND SUPERVISORY CONTROL SYSTEMS

UNIT IV FACTORY AUTOMATION
Factory layout - Tools and software based factory modeling -case study on automated manufacturing units, assembly unit, inspection systems and PLC based automated systems- Introduction to factory automation monitoring software

UNIT V BUILDING AUTOMATION

TOTAL : 45 PERIODS

OUTCOMES:
- The students to able to develop the automation models by the use of PLC, Supervisory control and factory and building automated tools.

REFERENCES
OBJECTIVES:
- To learn and model the nonlinear and complex control strategies for advanced mechatronics system developments.

UNIT I CONVENTIONAL CONTROL SYSTEM DESIGN 9

UNIT II ENHANCEMENT TO SINGLE LOOP CONTROL 9
Feed-forward control – Ratio control – Cascade control – Inferential control – Split-range – override control-- selective control –Auto tuning

UNIT III STATE SPACE ANALYSIS 9
Concepts of state variable and state model – State space to Transfer function and Transfer function to State space modes – Solving time invariant state equation – Controllability – Observability – State Observers – Design of control systems with observers.

UNIT IV NONLINEAR SYSTEMS AND CONTROL 9

UNIT V OTHER CONTROL METHODS 9

TOTAL : 45 PERIODS

OUTCOMES:
- The students will acquire the knowledge in nonlinear control and methods used to design the stable system.

REFERENCES
CP5292 INTERNET OF THINGS L T P C
 3 0 0 3

OBJECTIVES:
• To understand the fundamentals of Internet of Things
• To learn about the basics of IOT protocols
• To build a small low cost embedded system using Raspberry Pi.
• To apply the concept of Internet of Things in the real world scenario.

UNIT I INTRODUCTION TO IoT
Internet of Things - Physical Design- Logical Design- IoT Enabling Technologies - IoT Levels & Deployment Templates - Domain Specific IoTs - IoT and M2M - IoT System Management with NETCONF-YANG- IoT Platforms Design Methodology

UNIT II IoT ARCHITECTURE
M2M high-level ETSI architecture - IETF architecture for IoT - OGC architecture - IoT reference model - Domain model - information model - functional model - communication model - IoT reference architecture

UNIT III IOT PROTOCOLS

UNIT IV BUILDING IoT WITH RASPBERRY PI & ARDUINO

UNIT V CASE STUDIES AND REAL-WORLD APPLICATIONS
Real world design constraints - Applications - Asset management, Industrial automation, smart grid, Commercial building automation, Smart cities - participatory sensing - Data Analytics for IoT – Software & Management Tools for IoT Cloud Storage Models & Communication APIs - Cloud for IoT - Amazon Web Services for IoT.

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of the course, the student should be able to:
• Analyze various protocols for IoT
• Develop web services to access/control IoT devices.
• Design a portable IoT using Rasperpy Pi
• Deploy an IoT application and connect to the cloud.
• Analyze applications of IoT in real time scenario

REFERENCES:
OBJECTIVES:
- To get the clear understanding of application of mechanics in medicine.
- To study the properties and kinematics of bone and muscles.

UNIT I INTRODUCTION 9
Introduction to bio-mechanics, relation between mechanics and Medicine, Newton’s laws, stress, strain, shear rate, viscosity, visco elasticity, non-Newtonian viscosity, soft tissue mechanics, mechanical properties of soft biological tissues-Bio fluid mechanics-Introduction to Biomechatronic Systems

UNIT II MECHANICS IN SKELETAL AND MUSCULAR SYSTEM 9

UNIT III CONTROL MECHANISM OF BIOLOGICAL SYSTEMS 9
Skeletal muscles servo mechanism, Cardio vascular control mechanism, respiratory control mechanism – interfacing techniques with natural servo mechanism

UNIT IV PROSTHETIC AND ORTHOTIC DEVICES 9
Analysis of force in orthopaedic implants, Hand and arm replacement, different types of models for externally powered limb prosthetics, Lower limb, Upper limb orthotics, and aterial for prosthetic and orthotic devices, Functional Electrical Stimulation, Sensory Assist Devices.

UNIT V SIMULATION AND MODELLING OF BIOMECHANTRONICS 9
Physics-based modelling and simulation of biological structures- variables of interest – geometry- Introduction to model the skeletal system using open source software– human leg prosthesis and normal gait vs prosthesis leg analysis - Upper Extremity Kinematic Model

TOTAL : 45 PERIODS

OUTCOMES:
- The students able to understand the skeletal mechanics for rehabilitation and prosthetic developments.
- The students will learn to develop the rehabilitation devices and its interface.
REFERENCES

MR5016 ADVANCED COMPUTER VISION L T P C
3 0 0 3

OBJECTIVES:
• To impart knowledge on imaging machine vision and its applications

UNIT I IMAGE FORMATION AND CAMERA CALIBRATION 6
Projective Geometry - Imaging through lenses and pin-hole – Basic Photometry – Basic model of imaging geometry – Ideal Camera – Camera with intrinsic parameters – Approximate camera models – Camera Calibration – Methods and Procedure

UNIT II BASICS FOR COMPUTER VISION 6

UNIT III SHAPE FROM X 9
Depth Perception in Humans, Cues – Shape from Texture, Shading, Focus, Defocus, Structured Light Reconstruction – Time of Flight Methods

UNIT IV COMPUTATIONAL STEREO AND MOTION 12
Computational Stereopsis – Geometry, parameters – Correspondence problem, correlation based methods, feature-based methods – Epipolar Geometry, essential matrix and fundamental matrix, eight point algorithm – Reconstruction by triangulation, scale factor and up to a projective transformation – Visual Motion – Motion field of rigid objects – Optical Flow – Estimation of motion field – 3D structure and motion from sparse and dense motion fields – Motion based segmentation.

UNIT V ROBOT VISION 12

TOTAL : 45 PERIODS
OUTCOMES:
The students exposed to the techniques used in the computer vision analysis and its Applications

REFERENCES:
2. Emanuele Trucco, Alessandro Verri, "Introductory Techniques For 3D Computer Vision", First Edition

MR5017 ONBOARD COMPUTERS AND PROGRAMMING

OBJECTIVES:
- Students will understand the on board system architectures and its peripheral features.
- Students will learn the grammar of python programming language.
- Students will understand and be able to use the basic programming principles such as data types, variable, conditionals, loops, recursion and function calls.
- Students will learn how to use on-board computers for real time applications.

UNIT I INTRODUCTION TO SINGLE BOARD COMPUTERS

UNIT II REAL TIME OPERATING SYSTEM

UNIT III PYTHON PROGRAMMING

UNIT IV EMBEDDED PYTHON PROGRAMMING

UNIT V APPLICATIONS

TOTAL : 45 PERIODS
OUTCOMES:
- The learners will be able to know about the architecture, programming strategies and application overview of single board computers.

REFERENCES
3. Mark Lutz,”Learning Python, Powerful OOPs,O’reilly,2011

MR5018 AUTOMOTIVE ELECTRONICS

OBJECTIVES:
- To create a learning on various automotive electronic components and its integration for automotive development.

UNIT I OVERVIEW OF AUTOMOTIVE SYSTEMS 9

UNIT II SENSORS AND ACTUATORS IN AUTOMOTIVE 9

UNIT III ENGINE CONTROL & MONITORING SYSTEMS 11
UNIT IV TRANSMISSION AND SAFETY SYSTEMS & DIAGNOSTICS

UNIT V AUTOMOTIVE INSTRUMENTATION AND INFOTAINMENT

TOTAL : 45 PERIODS

OUTCOMES:
- The learners will be known to various automotive components and its working.
- The students will gain the knowledge on integration of various components in the automotive systems.

REFERENCES

MR5019 MARINE MECHATRONICS L T P C 3 0 0 3

OBJECTIVES:
- To study the mechanical, electrical, and communication subsystem in marine vehicles.

UNIT I INTRODUCTION TO MARINE SYSTEMS
UNIT II MARINE MECHANICAL SUBSYSTEMS 9

UNIT III MARINE ELECTRICAL SUBSYSTEMS 9

UNIT IV MARINE MEASUREMENTS, MANOEUVRING AND CONTROL 9
SYSTEMS

UNIT V COMMUNICATION AND NAVIGATION 9

TOTAL: 45 PERIODS

OUTCOMES:
- Students will familiar about various system in marine vehicles.

REFERENCES
OBJECTIVES:
- To learn about the aircraft system and its automation requirements.
- To study the sensors, measurement, actuators, navigation systems and its control of aircraft systems.

UNIT I OVERVIEW OF AIRCRAFT ENGINEERING 9

UNIT II SENSORS AND MEASUREMENTS 9

UNIT III MECHANISMS AND ACTUATORS 9

UNIT IV STABILITY AND CONTROL 9

UNIT V NAVIGATION 9

TOTAL: 45 PERIODS

OUTCOMES:
- The learners will be able to know about the sensors, measurement, actuators, navigation systems and its control of aircraft system in the system integration aspect.

REFERENCES
MR5021 MEDICAL MECHATRONICS

OBJECTIVES:
- To know the principle, design and application of various human measurement and assisted device for the human functional system.

UNIT I INTRODUCTION TO MEDICAL MECHATRONICS
Role of Mechatronics in Medical – Overview of human functional system – cell and origin bioelectric potential-Measurement of blood pressure-invasive and noninvasive methods- transducers role in measurement–Heart rate – pressure-temperature- Heart sound – Pulmonary function measurements

UNIT II ASSISTING AND THERAPEUTIC EQUIPMENTS

UNIT III CARDIAC AND REGULATORY ASSIST SYSTEM

UNIT IV MEDICAL IMAGING

UNIT V SENSORY ASSIST DEVICES AND AUTOMATED ANALYSER
Types of deafness, hearing aids, application of DSP in hearing aids- Ear irrigator- Voice synthesizer, speech trainer. Ultra sonic and laser canes, Intra ocular lens, Braille Reader, Tactile devices for visually challenged, ophthalmoscopy Text voice converter, screen readers and automated analyser and medical equipment’s.

TOTAL : 45 PERIODS
OUTCOMES:
The students able to know the role and importance of artificial assisting devices and also able to gather functionality and development related issues of assisting devices used in the medical field

REFERENCES
1. Albert M Cook and Webster J G – Therapeutic medical devices Prentice Hall Nee York 1982

MF5074 ENTREPRENEURSHIP DEVELOPMENT L T P C
3 0 0 3

OBJECTIVE:
• To develop and strengthen entrepreneurial quality and motivation in students. To impart basic entrepreneurial skills and understandings to run a business efficiently and effectively.

UNIT I ENTREPRENEURAL COMPETENCE 6

UNIT II ENTREPRENEURIAL ENVIRONMENT 12

UNIT III BUSINESS PLAN PREPARATION 12
UNIT IV LAUNCHING OF SMALL BUSINESS 10

UNIT V MANAGEMENT OF SMALL BUSINESS 5
Monitoring and Evaluation of Business - Preventing Sickness and Rehabilitation of Business Units- Effective Management of small Business.

TOTAL: 45 PERIODS

OUTCOME:
• Students will gain knowledge and skills needed to run a business.

REFERENCES:

CM5092 ENVIRONMENT CONSCIOUS MANUFACTURING L T P C 3 0 0 3

OBJECTIVE:
• To impart the knowledge in sustainable manufacturing, ISO 14000 series standards, green manufacturing, recycling and life cycle assessment.

UNIT I SUSTAINABLE MANUFACTURING AND EMS: 9

UNIT II GREEN MANUFACTURING: 9
Green Design and Quality Initiatives - Environmental Cost Accounting and Business Strategy - Accounting for an Environmentally Conscious Setting - The Development of Eco labelling Schemes

UNIT III RECYCLING: 9
Recycling as Universal Resource Policy - Innovation Towards Environmental Sustainability In Industry - A Systematic Framework for Environmentally Conscious Design
UNIT IV ENVIRONMENTAL ATTRIBUTES OF MANUFACTURING: 10
Environmental Attributes of Manufacturing Processes - Environmental Decision Support Systems - Decision Models for Reverse Production System Design - Environmentally Sound Supply Chain Management

UNIT V LIFE CYCLE ASSESSMENT 8
Life Cycle Assessment - Multipath way and Cumulative Risk Assessment - Reclamation And Recycling of Waste

TOTAL: 45 PERIODS

OUTCOME:
On completion of the course the students will be able to follow the guidelines of ISO 14000, implement green design, follow environmental norms in manufacturing and do lifecycle assessment of products and processes.

REFERENCES

CM5073 GREEN MANUFACTURING L T P C
3 0 0 3

OBJECTIVES:
To introduce the concept of Green Manufacturing Design to the students

UNIT I INTRODUCTION 9
Environmental effects of design – Environmental damage – In efficient energy use – Design for recycling.

UNIT II ENVIRONMENTAL LIFE CYCLE ASSESSMENT 9

UNIT III GREEN DESIGN METHODS 9

UNIT IV DESIGN FOR ENVIRONMENT 9
Eco design – Industrial Ecology – Pollution prevention – Reduction of toxic emission.

UNIT V SUSTAINABLE ECONOMIC ENVIRONMENT 9

TOTAL: 45 PERIODS

OUTCOMES:
• Students will understand the concepts of Green Manufacturing Design
• It will impart green design methods and to assess the life cycle of the product
REFERENCES: