1. **Programme Educational Objectives (PEOs)**

Graduates of B. E. Petrochemical Engineering will

I. Exhibit a professional and ethical attitude, effective communication skills, teamwork, multidisciplinary approach, and an ability to solve the problems encountered in petrochemical sector.

II. Gain knowledge in basic sciences, mathematics and computational platforms.

III. Have a knowledge and competency in refinery process industries complemented by the appropriate skills and attributes.

IV. Understand the theory and applications of analytical equipments used in industries for testing the quality of petroleum, intermediates and products.

V. Address to meet the world's ever-increasing demand for hydrocarbon fuel, thermal energy, and waste management.

2. **Programme Outcomes (POs)**

On successful completion of the programme,

I. Graduates will be able to demonstrate their knowledge professionally and shoulder ethical responsibilities.

II. Graduates will be able to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

III. Graduates will be able to identify, formulate, and solve engineering problems related to petrochemical industry.

IV. Graduates will be capable to design experiments, analyze and interpret data.

V. Graduates will be able to meet the world's ever-increasing demand for hydrocarbon fuel, thermal energy, and waste management.

VI. Graduates will be able to communicate effectively and work in interdisciplinary groups.

VII. Graduates will have a knowledge to analyze chemical and petrochemical products.

VIII. Graduates will understand the characteristics of source and reservoir Engineering.

IX. Graduates will gain expertise with environmentally sound exploration, evaluation and recovery of oil, gas and other fluids in the earth.

X. Graduates will understand the prerequisites of control strategies and the mechanism of advance control systems.
3. PEOs / POs Mapping

<table>
<thead>
<tr>
<th>Programme Educational Objectives</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>I</td>
<td>✓</td>
</tr>
<tr>
<td>II</td>
<td>✓</td>
</tr>
<tr>
<td>III</td>
<td>✓</td>
</tr>
<tr>
<td>IV</td>
<td>✓</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
</tr>
</tbody>
</table>

4. Semester Course Wise PEOs Mapping

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SEM</th>
<th>Course Title</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR I</td>
<td>SEM I</td>
<td>Communicative English</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mathematics I</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Physics</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Chemistry</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Graphics</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics and Chemistry Laboratory</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical English</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mathematics II</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics of Materials</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic Chemistry</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Mechanical Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial Chemical Technology</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic Chemistry Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Practices Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR II</td>
<td>SEM III</td>
<td>Probability and Statistics</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mechanics</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluid Mechanics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Materials Technology</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process calculations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of Electrical and Electronics Engineering</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical Engineering Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>SEM IV</td>
<td>SEM V</td>
<td>SEM VI</td>
<td>SEM VII</td>
<td>SEM VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td></td>
<td></td>
<td>Chemical Analysis Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petroleum Exploration and Exploitation Techniques</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry for Technologists</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural Gas Engineering</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical Operations</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petroleum Primary Processing Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluids and Solid Operations Laboratory</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat Transfer</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR III</td>
<td>Mass Transfer I</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Reaction Engineering</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Communication</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat Transfer Laboratory</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petrochemical Analysis Laboratory</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petroleum Secondary Processing Technology</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mass Transfer II</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalytic Reaction Engineering</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Ethics In Engineering</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Instrumentation, Dynamics and Control</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mass Transfer Laboratory</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petroleum Testing Laboratory</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Equipment Design and Drawing</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR IV</td>
<td>Environmental Science And Engineering</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reaction Engineering and Process Control Laboratory</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internship</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pipeline and Welding Technology</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNA UNIVERSITY, CHENNAI
AFFILIATED INSTITUTIONS
REGULATIONS 2017
B. E. PETROCHEMICAL ENGINEERING
CHOICE BASED CREDIT SYSTEM
I TO VIII SEMESTERS (FULL TIME) CURRICULA AND SYLLABI

SEMESTER I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8151</td>
<td>Engineering Mathematics–I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8251</td>
<td>Engineering Mathematics–II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8254</td>
<td>Physics of Materials</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY8291</td>
<td>Organic Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>BE8256</td>
<td>Basic Mechanical Engineering</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>PM8251</td>
<td>Industrial Chemical Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CY8281</td>
<td>Organic Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>29</td>
<td>21</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8391</td>
<td>Probability and Statistics</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>GE8292</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PM8351</td>
<td>Fluid Mechanics</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>PM8391</td>
<td>Materials Technology</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CH8351</td>
<td>Process Calculations</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>EE8352</td>
<td>Principles of Electrical and Electronics Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EE8361</td>
<td>Electrical Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>ME8362</td>
<td>Mechanical Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>33</td>
<td>19</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PE8491</td>
<td>Chemical Engineering Thermodynamics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PM8451</td>
<td>Petroleum Exploration and Exploitation Techniques</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CY8292</td>
<td>Chemistry for Technologists</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PE8092</td>
<td>Natural Gas Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CH8451</td>
<td>Mechanical Operations</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PM8452</td>
<td>Petroleum Primary Processing Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>PE8461</td>
<td>Fluids and Solid Operations Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>CH8281</td>
<td>Chemical Analysis Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>18</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL

26 18 0 8 22
SEMESTER V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CH8591</td>
<td>Heat Transfer</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CH8551</td>
<td>Mass Transfer I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PE8091</td>
<td>Chemical Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Open Elective I’</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CH8561</td>
<td>Heat Transfer Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>PM8561</td>
<td>Petrochemical Analysis Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>27</td>
<td>15</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

* - Course from the curriculum of the other UG Programmes

SEMESTER VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PM8651</td>
<td>Petroleum Secondary Processing Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CH8651</td>
<td>Mass Transfer II</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PE8072</td>
<td>Catalytic Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE8076</td>
<td>Professional Ethics in Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CH8653</td>
<td>Process Instrumentation, Dynamics and Control</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CH8781</td>
<td>Mass Transfer Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>PE8661</td>
<td>Petroleum Testing Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>28</td>
<td>18</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PM8751</td>
<td>Process Equipment Design and Drawing</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Professional Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective II'</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>PM8761</td>
<td>Reaction Engineering and Process Control Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>PM8711</td>
<td>Internship</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td>18</td>
<td>0</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

* - Course from the curriculum of the other UG Programmes

SEMESTER VIII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Professional Elective VI</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PM8801</td>
<td>Pipeline and Welding Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PM8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>PM8812</td>
<td>Seminar</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>30</td>
<td>6</td>
<td>0</td>
<td>24</td>
<td>18</td>
</tr>
</tbody>
</table>

TOTAL CREDITS: 183

PROFESSIONAL ELECTIVES

PROFESSIONAL ELECTIVE I, SEMESTER V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PM8078</td>
<td>Petrochemical Unit Processes</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PM8075</td>
<td>Instrumentation and Instrumental Analysis</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CH8094</td>
<td>Polymer Technology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PM8076</td>
<td>Non-Conventional hydrocarbon sources</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8071</td>
<td>Disaster Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVE II, SEMESTER VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PM8073</td>
<td>Design of Pressure Vessels and Piping</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PM8074</td>
<td>Drilling and Well Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PM8080</td>
<td>Production Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PE8071</td>
<td>Advanced Separation Techniques</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8075</td>
<td>Intellectual Property Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CH8791</td>
<td>Transport Phenomena</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE III, SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PM8082</td>
<td>Water Treatment and Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CH8072</td>
<td>Fluidization Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PM8071</td>
<td>Chemical Process Design</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PE8073</td>
<td>Enhanced Oil Recovery</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8074</td>
<td>Human Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CH8077</td>
<td>Process Modeling and Simulation</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE IV, SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PM8079</td>
<td>Petroleum Process Equipment Auxiliaries</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PE8074</td>
<td>Multicomponent Distillation</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PE8075</td>
<td>Petroleum Corrosion Technology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PM8081</td>
<td>Refinery Process Design</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE V, SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PE8079</td>
<td>Storage Transportation of Crude Oil and Natural gas</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PE8078</td>
<td>Reservoir Characterization and Modeling</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PM8077</td>
<td>Petrochemical Derivatives</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE8077</td>
<td>Total Quality Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE VI, SEMESTER VIII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PE8076</td>
<td>Petroleum Economics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PM8072</td>
<td>Design of Heat Exchangers</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PE8093</td>
<td>Plant Safety and Risk Analysis</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PC8071</td>
<td>Safety in Chemical Industries</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8073</td>
<td>Fundamentals of Nano Science</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SUBJECT AREAWISE DETAILS

HUMANITIES AND SOCIAL SCIENCES (HS)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8076</td>
<td>Professional Ethics in Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

BASIC SCIENCES (BS)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA8151</td>
<td>Engineering Mathematics I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>MA8251</td>
<td>Engineering Mathematics II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>PH8254</td>
<td>Physics of Materials</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CY8291</td>
<td>Organic Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CY8281</td>
<td>Organic Chemistry Laboratory</td>
<td>BS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>MA8391</td>
<td>Probability and Statistics</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>CY8292</td>
<td>Chemistry for Technologists</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>CH8281</td>
<td>Chemical Analysis Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

ENGINEERING SCIENCES (ES)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>BE8256</td>
<td>Basic Mechanical Engineering</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>GE8292</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>PM8391</td>
<td>Materials Technology</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>EE8352</td>
<td>Principles of Electrical and Electronics Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>EE8361</td>
<td>Electrical Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>ME8362</td>
<td>Mechanical Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>PE8461</td>
<td>Fluids and Solid operations Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PM8251</td>
<td>Industrial Chemical Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PM8351</td>
<td>Fluid Mechanics</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CH8351</td>
<td>Process Calculations</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>PE8491</td>
<td>Chemical Engineering Thermodynamics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>PM8451</td>
<td>Petroleum Exploration and Exploitation Techniques</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PE8092</td>
<td>Natural Gas Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CH8451</td>
<td>Mechanical Operations</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>PM8452</td>
<td>Petroleum Primary Processing Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>CH8591</td>
<td>Heat Transfer</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>CH8551</td>
<td>Mass Transfer I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>PE8091</td>
<td>Chemical Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>CH8561</td>
<td>Heat Transfer Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>13.</td>
<td>PM8561</td>
<td>Petrochemical Analysis Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>14.</td>
<td>PM8651</td>
<td>Petroleum Secondary Processing Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>CH8651</td>
<td>Mass Transfer II</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>16.</td>
<td>PE8072</td>
<td>Catalytic Reaction Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>CH8781</td>
<td>Mass Transfer Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>18.</td>
<td>PE8661</td>
<td>Petroleum Testing Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>19.</td>
<td>CH8653</td>
<td>Process Instrumentation, Dynamics and control</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>PM8751</td>
<td>Process Equipment Design and Drawing</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>21.</td>
<td>PM8761</td>
<td>Reaction Engineering and Process Control Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>22.</td>
<td>PM8801</td>
<td>Pipeline and welding Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>PM8711</td>
<td>Internship</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>PM8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>PM8812</td>
<td>Seminar</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>S. No.</td>
<td>Subject Area</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>HUMANITIES AND SOCIAL SCIENCES (HS)</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BASIC SCIENCE (BS)</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>ENGINEERING SCIENCE (ES)</td>
<td>9</td>
<td>6</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>PROFESSIONAL COURSE (PC)</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>EMPLOYABILITY ENHANCEMENT COURSES (EEC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>PROFESSIONAL ELECTIVES (PE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OPEN ELECTIVES (OE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>22</td>
<td>21</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>
OBJECTIVES:

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills.

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY & FRIENDS 12

UNIT II GENERAL READING AND FREE WRITING 12
Reading - comprehension-pre-reading-post reading- comprehension questions (multiple choice questions and /or short questions/ open-ended questions)-inductive reading- short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts). Writing – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures. Speaking – sharing information of a personal kind—greeting – taking leave. Language development – prepositions, conjunctions. Vocabulary development - guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT 12

UNIT IV READING AND LANGUAGE DEVELOPMENT 12
Reading: comprehension-reading longer texts- reading different types of texts- magazines Writing: letter writing, informal or personal letters-e-mails-conventions of personal email. Listening: listening to dialogues or conversations and completing exercises based on them. Speaking: speaking about oneself- speaking about one’s friend. Language development- Tenses- simple present-simple past- present continuous and past continuous. Vocabulary development- synonyms-antonyms- phrasal verbs.

UNIT V EXTENDED WRITING 12
OUTCOMES:
At the end of the course, learners will be able to:

- Read articles of a general kind in magazines and newspapers.
- Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English
- Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

REFERENCES

MA8151 ENGINEERING MATHEMATICS – I

OBJECTIVES:
- The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS
Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

UNIT III INTEGRAL CALCULUS
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.
UNIT IV MULTIPLE INTEGRALS 12

UNIT V DIFFERENTIAL EQUATIONS 12

TOTAL : 60 PERIODS

OUTCOMES :
After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.

TEXT BOOKS :
2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES :

PH8151 ENGINEERING PHYSICS L T P C
3 0 0 3

OBJECTIVES:
- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.
UNIT I PROPERTIES OF MATTER

UNIT II WAVES AND FIBER OPTICS

UNIT III THERMAL PHYSICS

UNIT IV QUANTUM PHYSICS

UNIT V CRYSTAL PHYSICS
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

OUTCOMES:
Upon completion of this course,

- the students will gain knowledge on the basics of properties of matter and its applications,
- the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- the students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- the students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- the students will understand the basics of crystals, their structures and different crystal growth techniques.

TOTAL : 45 PERIODS
TEXT BOOKS:

REFERENCES:

CY8151 ENGINEERING CHEMISTRY L T P C
3 0 0 3

OBJECTIVES:
• To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
• To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
• Preparation, properties and applications of engineering materials.
• Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
• Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

UNIT II SURFACE CHEMISTRY AND CATALYSIS

UNIT III ALLOYS AND PHASE RULE

UNIT IV FUELS AND COMBUSTION
Fuels: Introduction - classification of fuels - coal - analysis of coal (proximate and ultimate) -
carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - manufacture of synthetic petrol (Bergius process) - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol and biodiesel. Combustion of fuels: Introduction - calorific value - higher and lower calorific values - theoretical calculation of calorific value - ignition temperature - spontaneous ignition temperature - explosive range - flue gas analysis (ORSAT Method).

UNIT V ENERGY SOURCES AND STORAGE DEVICES 9
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H₂-O₂ fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING 3 0 0 3

OBJECTIVES:
- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures — lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING 9
Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a
card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

OUTCOMES:

Upon completion of the course, students will be able to

- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python Programs.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

GE8152 ENGINEERING GRAPHICS

OBJECTIVES:

- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING

Visualization concepts and Free Hand sketching: Visualization principles – Representation of Three Dimensional objects – Layout of views - Freehand sketching of multiple views from pictorial views of objects.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple
vertical positions - Perspective projection of simple solids - Prisms, pyramids and cylinders by visual ray method.

OUTCOMES:
On successful completion of this course, the student will be able to
- familiarize with the fundamentals and standards of Engineering graphics
- perform freehand sketching of basic geometrical constructions and multiple views of objects.
- project orthographic projections of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- visualize and project isometric and perspective sections of simple solids.

TEXT BOOK:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size. The examination will be conducted in appropriate sessions on the same day.
OBJECTIVES:

- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS

1. Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13. Simulate bouncing ball using Pygame

PLATFORM NEEDED

Python 3 interpreter for Windows/Linux

OUTCOMES:

Upon completion of the course, students will be able to

- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.

TOTAL: 60 PERIODS

BS8161 PHYSICS AND CHEMISTRY LABORATORY

(Common to all branches of B.E. / B.Tech Programmes) 0 0 4 2

OBJECTIVES:

- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)

1. Determination of rigidity modulus – Torsion pendulum
2. Determination of Young’s modulus by non-uniform bending method
3. (a) Determination of wavelength, and particle size using Laser
(b) Determination of acceptance angle in an optical fiber.
5. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
6. Determination of wavelength of mercury spectrum – spectrometer grating
7. Determination of band gap of a semiconductor
8. Determination of thickness of a thin wire – Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
- apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometry.

1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by Iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-
 Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Determination of CMC.
15. Phase change in a solid.
16. Conductometric titration of strong acid vs strong base.

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TOTAL: 30 PERIODS
TEXTBOOKS:

HS8251 TECHNICAL ENGLISH L T P C
4 0 0 4

OBJECTIVES:
The Course prepares second semester engineering and Technology students to:
- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.

UNIT I INTRODUCTION TECHNICAL ENGLISH 12
Listening- Listening to talks mostly of a scientific/technical nature and completing information-gap exercises-
Speaking – Asking for and giving directions-
Reading – reading short technical texts from journals- newspapers-
Writing- purpose statements – extended definitions – issue-
writing instructions – checklists-recommendations-
Vocabulary Development- technical vocabulary
Language Development – subject verb agreement - compound words.

UNIT II READING AND STUDY SKILLS 12
Listening- Listening to longer technical talks and completing exercises based on them-
Speaking – describing a process-
Reading – reading longer technical texts- identifying the various transitions in a text-
paraphrasing-
Writing- interpreting charts, graphs-
Vocabulary Development- vocabulary used in formal letters/emails and reports
Language Development- impersonal passive voice, numerical adjectives.

UNIT III TECHNICAL WRITING AND GRAMMAR 12
Listening- Listening to classroom lectures/ talks on engineering/technology-
Speaking – introduction to technical presentations-
Reading – longer texts both general and technical, practice in speed reading;
Writing- Describing a process, use of sequence words-
Vocabulary Development- sequence words- Misspelled words.
Language Development- embedded sentences

UNIT IV REPORT WRITING 12
Listening- Listening to documentaries and making notes. Speaking – mechanics of presentations-
Reading – reading for detailed comprehension-
Writing- email etiquette- job application – cover letter – Résumé preparation(via email and hard copy)-
analytical essays and issue based essays--
Vocabulary Development- finding suitable synonyms-paraphrasing-
Language Development- clauses- if conditionals.

UNIT V GROUP DISCUSSION AND JOB APPLICATIONS 12
Listening- TED/Ink talks; Speaking – participating in a group discussion-
Reading– reading and understanding technical articles-
Writing– Writing reports- minutes of a meeting- accident and survey-
Vocabulary Development- verbal analogies
Language Development- reported speech.
TOTAL :60 PERIODS

OUTCOMES: At the end of the course learners will be able to:

- Read technical texts and write area-specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

REFERENCES

2. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007

Students can be asked to read Tagore, Chetan Bhagat and for supplementary reading.

MA8251 ENGINEERING MATHEMATICS – II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

OBJECTIVES:

- This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES

UNIT II VECTOR CALCULUS

Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.
UNIT III ANALYTIC FUNCTIONS
Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions \(w = z + c, \frac{1}{z}, z^2 \) - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

UNIT V LAPLACE TRANSFORMS

TOTAL: 60 PERIODS

OUTCOMES:
After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigenvalues and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green’s theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To introduce the physics of various materials relevant to different branches of technology

UNIT I PREPARATION OF MATERIALS

UNIT II CONDUCTING MATERIALS

UNIT III SEMICONDUCTING MATERIALS

UNIT IV DIELECTRIC AND MAGNETIC MATERIALS

UNIT V NEW MATERIALS AND APPLICATIONS

TOTAL : 45 PERIODS

OUTCOMES:

At the end of the course, the students will able to

- gain knowledge on phase diagrams and various material processing methods,
- acquire knowledge on basics of conducting materials, superconductors and their applications
- get knowledge on the functioning of semiconducting materials and their applications in
LED and solar cells,
• understand the functioning of various dielectric and magnetic materials,
• have the necessary understanding on various advanced materials.

TEXT BOOKS:

REFERENCES

CY8291 ORGANIC CHEMISTRY
L T P C
3 0 0 3

OBJECTIVE:
• To enable the students to learn the type of components in which organic reactions take place and also to know the preparation of the essential organic compounds.

UNIT I ORGANIC REACTION MECHANISM
Electrophilic reactions-Friedel crafts reaction, Riemer Tiemenn reaction, Beckmann rearrangements; nucleophilic reactions- aldol condensation, perkin reaction, benzoin condensation; free radical reaction-halogenation of alkane, addition of HBr on alkene in presence of peroxide; allylic halogenation - using N-Bromo Succinamide (NBS), thermal halogenation of alkene CH₃ – CH = CH₂.

UNIT II CARBOHYDRATES
Introduction – mono and disaccharides – important reactions – polysaccharides – starch and cellulose – derivatives of cellulose – carboxy methyl cellulose and gun cotton – structural aspects of cellulose

UNIT III POLYNUCLEAR AROMATICS AND HETEROCYCLES
Classification of polynuclear aromatics. naphthalene preparation, properties and uses. Classification of heterocyclic compounds. Furan, thiophene, pyrrole, pyridine, quinoline, isoquinoline - preparation, properties and uses.

UNIT IV AMINO ACIDS AND PROTEINS
Classification, preparation (Strecker, Skraup, Gabriel phthalimide) and properties of Amino acids. Composition and classification of proteins. Structure of proteins – tests for proteins – general properties and relations of proteins – hydrolysis of proteins.
UNIT V DRUGS & DYES
Classification and properties of drugs. Penicillin sulpha drugs, mode of action, synthesis of sulphamylamide, chloroquine and chloroamphenicol.

OUTCOMES:
- At the end of the course students will have knowledge on various reaction mechanism, preparation of organic compounds and their properties.

TEXTBOOKS:

REFERENCES:

BE8256 BASIC MECHANICAL ENGINEERING L T P C
4 0 0 4

OBJECTIVE
- To impart knowledge on thermodynamics and thermal engineering power generating units such as engines and theory of machines

UNIT I LAWS OF THERMODYNAMICS 12
Basic concepts and hints; Zeroth law; First Law of Thermodynamics - Statement and application; Steady flow energy equation-problems- Second law of Thermodynamics – Kelvin - Plank statement and Clausius statement- problems; Limitations; Heat Engine, Refrigerator and Heat Pump, Available energy, Third law of Thermodynamics - Statement.

UNIT II HEATING AND EXPANSION OF GASES 12
Expressions for work done, Internal energy and heat transfer for Constant Pressure, Constant Volume, Isothermal, Adiabatic and Polytropic processes-Derivations and problems; Free expansion and Throttling process.

UNIT III AIR STANDARD CYCLES 12
Carnot cycle; Stirlings cycle; Joule cycle; Otto cycle; Diesel cycle; Dual combustion Cycle-Derivations and problems.

UNIT IV I.C. ENGINES, STEAM AND ITS PROPERTIES AND TEAM 12
Engine nomenclature and classification; SI Engine; CI Engine; Four Stroke cycle, Two stroke cycle; Performance of I.C.Engine; Brake thermal efficiency; Indicated Thermal Efficiency, Specific fuel consumption.
Steam - Properties of steam; Dryness fraction; latent heat; Total heat of wet steam; Dry steam; Superheated steam. Use of steam tables; volume of wet steam, volume of superheated steam;
External work of evaporation; Internal energy; Entropy of vapour. Expansion of vapour, Rankine cycle. Steam turbines – Impulse and Reaction types - Principles of operation.

UNIT V SIMPLE MECHANISM, FLY WHEEL, DRIVES AND BALNCING 12
Definition of Kinematic Links, Pairs and Kinematic Chains; Flywheel-Turning moment Diagram; Fluctuation of Energy. Belt and rope drives; Velocity ratio; slip; Creep; Ratio of tensions; Length of belt; Power Transmitted; gear trains-types. Balancing of rotating masses in same plane; Balancing of masses rotating in different planes.

OUTCOME
Students should learn thermodynamics and thermal engineering to understand the principles behind the operation of thermal equipments like IC engines and turbines etc., Students should be able to appreciate the theory behind operation of machinery and be able to design simple mechanisms

TEXT BOOKS

REFERENCES

PM8251 INDUSTRIAL CHEMICAL TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:
To enable the students to gain knowledge on various aspects of production engineering and understand the practical methods of production in a chemical factory.

UNIT I SULFUR, SULFURIC ACID AND CEMENT 9
Sulfur, Raw materials Sources, Mining and production of Sulfur – Sulfuric acid, Methods of production of Sulfuric acid – Contact process – Chamber process. Cement – properties of Cement – Methods of production – Overall factors for Cement industry.

UNIT II FERTILIZER INDUSTRY, FUEL AND INDUSTRIAL GASES 9
UNIT III PULP, PAPER, SUGAR AND STARCH INDUSTRIES

UNIT IV PETROLEUM AND PETRO CHEMICAL INDUSTRIES

UNIT V RUBBERS, POLYMERS AND SYNTHETIC FIBRE

OUTCOME:
- Student can classify the chemical process industry into industrial categories of base, intermediate end-products and specialty chemicals manufacturers.

TEXT BOOKS:

REFERENCES:

CY8281 ORGANIC CHEMISTRY LABORATORY L T P C
0 0 4 2

OBJECTIVE:
- To learn basic principles involved in analysis and synthesis of different organic derivatives.

LIST OF EXPERIMENTS
1. Quantitative analysis of organic compounds – Identification of aliphatic/aromatic, saturated/unsaturated compounds.
2. Identification and characterization of various functional groups by their characteristic reactions:
 a) alcohol, b) aldehyde, c) ketone, d) carboxylic acid, e) phenol, f) ester,
 g) primary, secondary and tertiary amines and h) nitro compounds.
3. Analysis of an unknown organic compound and preparation of suitable solid derivatives
 (Benzoic acid from Benzaldehyde, hydrolysis of ester and meta- dinitrobenzene from nitrobenzene).
5. Analysis of proteins.
6. Methodology of filtration and recrystallization.
7. Introduction to organic synthetic procedures:
 i. Acetylation – Preparation of acetanilide from aniline.
 ii. Hydrolysis – Preparation of salicylic acid from methyl salicylate.
 iii. Substitution – Conversion of acetone to iodoform.
 iv. Nitration – Preparation of m-dinitrobenzene from nitrobenzene.
 v. Oxidation – Preparation of benzoic acid from benzaldehyde/ benzyl alcohol

 TOTAL: 60 PERIODS

List of Equipment for a Batch of 30 students

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Bunsen burners</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td>LPG Cylinder in each row of the Laboratory</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Hot Air Oven</td>
<td>2 Nos</td>
</tr>
<tr>
<td>4.</td>
<td>Hot Plate</td>
<td>6 Nos</td>
</tr>
<tr>
<td>5.</td>
<td>Water Bath</td>
<td>6 Nos</td>
</tr>
<tr>
<td>7.</td>
<td>Magnetic Stirrers</td>
<td>6 Nos.</td>
</tr>
<tr>
<td>8.</td>
<td>Mechanical Stirrers</td>
<td>6 Nos.</td>
</tr>
<tr>
<td>9.</td>
<td>Refluxion Set up</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Sharp Knives to cut sodium</td>
<td>6 Nos.</td>
</tr>
<tr>
<td>11.</td>
<td>Balance</td>
<td></td>
</tr>
<tr>
<td>Desirable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melting Point apparatus</td>
<td></td>
</tr>
</tbody>
</table>

OUTCOME:
- The student is able to identify what distinguishes a strong and weak nucleophile and recall the rules of reactions. The student shows their mastery of nomenclature since ethyl bromide is not drawn out. The student analyzes a list of compounds and determines their reactivity.

REFERENCES:

GE8261 ENGINEERING PRACTICES LABORATORY L T P C
0 0 4 2

OBJECTIVES:
- To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)
I CIVIL ENGINEERING PRACTICE

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
 - Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
 - Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:

(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.
(b) Gas welding practice

Basic Machining:

(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:

(a) Forming & Bending:
(b) Model making – Trays and funnels.
(c) Different type of joints.

Machine assembly practice:

(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:

(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and V – fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE

1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EX-OR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 60 PERIODS

OUTCOMES:
On successful completion of this course, the student will be able to
- fabricate carpentry components and pipe connections including plumbing works.
- use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
 (d) Planer 2 Nos
 (e) Hand Drilling Machine 2 Nos
 (f) Jigsaw 2 Nos

MECHANICAL
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder (b) Digital Live-wire detector 2 Nos

ELECTRONICS
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply

MA8391 PROBABILITY AND STATISTICS

OBJECTIVE:
- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

UNIT I PROBABILITY AND RANDOM VARIABLES 12

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES 12
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III TESTING OF HYPOTHESIS 12
Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means -Tests based on t, Chi-square and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.
UNIT IV DESIGN OF EXPERIMENTS 12
One way and Two way classifications - Completely randomized design – Randomized block design – Latin square design - 2nd factorial design.

UNIT V STATISTICAL QUALITY CONTROL 12
Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling.

TOTAL: 60 PERIODS

OUTCOMES:
Upon successful completion of the course, students will be able to:

- Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture and statistical quality control.
- Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

TEXT BOOKS:

REFERENCES:

GE8292 ENGINEERING MECHANICS L T P C
3 2 0 4

OBJECTIVE:
- To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I STATICS OF PARTICLES 9+6
Introduction – Units and Dimensions – Laws of Mechanics – Lami’s theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces – Vector operations of forces -
additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components –
Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent
systems of forces – Principle of transmissibility.

UNIT II EQUILIBRIUM OF RIGID BODIES 9+6
Free body diagram – Types of supports – Action and reaction forces – stable equilibrium –
Moments and Couples – Moment of a force about a point and about an axis – Vectorial
representation of moments and couples – Scalar components of a moment – Varignon’s theorem
– Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid
bodies in three dimensions

UNIT III PROPERTIES OF SURFACES AND SOLIDS 9+6
Centroids and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular
areas by integration – T section, I section, - Angle section, Hollow section by using standard
formula –Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular,
triangular areas by integration – T section, I section, Angle section, Hollow section by using
standard formula – Parallel axis theorem and perpendicular axis theorem – Principal moments of
inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia
for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of
inertia.

UNIT IV DYNAMICS OF PARTICLES 9+6
Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion
bodies.

UNIT V FRICTION AND RIGID BODY DYNAMICS 9+6
Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction
–wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and
acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and
sphere.

TOTAL: 45+30=75 PERIODS

OUTCOMES:
On successful completion of this course, the student will be able to

• illustrate the vectorial and scalar representation of forces and moments
• analyse the rigid body in equilibrium
• evaluate the properties of surfaces and solids
• calculate dynamic forces exerted in rigid body
• determine the friction and the effects by the laws of friction

TEXT BOOKS:

REFERENCES:

PM8351 FLUID MECHANICS

OBJECTIVES:
- To impart to the student knowledge on fluid properties, fluid statics, dynamic characteristics for through pipes and porous medium.
- To impart flow measurement and fluid machineries.

UNIT I
Methods of analysis and description - fluid as a continuum – Velocity and stress field - Newtonian and non-Newtonian fluids – Classification of fluid motion

UNIT II
Fluid statics – basic equation - equilibrium of fluid element – pressure variation in a static fluid - application to manometry – Differential analysis of fluid motion – continuity, equation of motions, Bernoulli equation and Navier- Stokes equation.

UNIT III
The principle of dimensional homogeneity – dimensional analysis, Rayleigh method and the Pi-theorem - non-dimensional action of the basic equations - similitude - relationship between dimensional analysis and similitude - use of dimensional analysis for scale up studies

UNIT IV
Reynolds number regimes, internal flow - flow through pipes – pressure drop under laminar and turbulent flow conditions – major and minor losses; Line sizing; External flows - boundary layer concepts, boundary layer thickness under laminar and turbulent flow conditions- Flow over a sphere – friction and pressure drag - flow through fixed and fluidized beds.

UNIT V
Flow measurement - Constant and variable head meters; Velocity measurement techniques; Types, characteristics and sizing of valves; Classification, performance characteristics and sizing of pumps, compressors and fans

OUTCOMES:
On completion of this course, the students would have knowledge on
- Fluid properties and their characteristics while static and during flow through ducts, pipes and porous medium.
- Several machineries used to transport the fluid and their performance.

TEXT BOOKS:

REFERENCES:

PM8391 MATERIALS TECHNOLOGY

<table>
<thead>
<tr>
<th>OBJECTIVE:</th>
<th>L T P C</th>
</tr>
</thead>
<tbody>
<tr>
<td>To provide students with a strong foundation in materials science with emphasis on the fundamental scientific and engineering principles which underlie the knowledge and implementation of material structure, processing, properties, and performance of all classes of materials used in engineering systems.</td>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

UNIT I STRUCTURE OF MATERIALS

Introduction-classification of materials, selection of materials, properties of materials, x-ray crystallography, Bragg’s law, x-ray diffraction, electron diffraction, neutron diffraction, structure of NaCl and diamond, Crystal defects - point, line, surface and volume defects, alloy formation, solid solution types, solidification of castings, structural examination using microscopy.

UNIT II METALLURGICAL PROPERTIES OF MATERIALS

UNIT III TYPES OF MATERIALS

UNIT IV PHYSICAL CHARACTERISTICS OF MATERIALS

UNIT V NON-METALLIC MATERIALS

OUTCOME:
- At the end of this course, the students will be able to understand various material and its properties and manufacturing methods.
TEXT BOOKS:

REFERENCES:

CH8351 PROCESS CALCULATIONS L T P C
3 2 0 4

OBJECTIVE:
- To acquire knowledge on laws of chemistry and its application to solution of mass and energy balance equations for single and network of units and introduce to process simulators.

UNIT I
Base and derived Units - Composition of Mixture and solutions - calculations of pressure, volume and temperature using ideal gas law. Use of partial pressure and pure component volume in gas calculations, applications of real gas relationship in gas calculation.

UNIT II
Stoichiometric principles, Application of material balance to unit operations like distillation, evaporation, crystallisation, drying etc., - Material balance with chemical reaction - Limiting and excess reactants - recycle - bypass and purging - Unsteady state material balances.

UNIT III
Calculation of absolute humidity, molal humidity, relative humidity and percentage humidity - Use of humidity in condensation and drying - Humidity chart, dew point.

UNIT IV
Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible heat and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of formation, combustion, solution, mixing etc., calculation of standard heat of reaction - Effect of pressure and temperature on heat of reaction - Energy balance for systems with and without chemical reaction - Unsteady state energy balances

UNIT V
Determination of Composition by Orsat analysis of products of combustion of solid, liquid and gas fuels - Calculation of excess air from orsat technique, problems on sulphur and sulphur burning compounds - Application of Process simulators in energy and material balance problems.

TOTAL: 75 PERIODS

OUTCOMES:
- Understand the fundamentals of units and stoichiometric equations.
- Write material balance for different chemical process.
- Understand the fundamentals of ideal gas behavior and phase equilibria. Write energy balance for different chemical process.
TEXT BOOKS:

REFERENCE:

EE8352 PRINCIPLES OF ELECTRICAL AND ELECTRONICS ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
To impart knowledge on
- Electric circuit laws , single and three phase circuits and wiring
- Working principles of Electrical Machines
- Various electronic devices and measuring instruments

UNIT I ELECTRICAL CIRCUITS
Basic principles involved in power generation, transmission and distribution, Ohms Law ,Kirchoff’s Law , steady state solution of DC circuits , Thevinin’s Theorem, Norton’s Theorem, Superposition Theorem.

UNIT II AC CIRCUITS
Introduction to AC circuits – waveforms and RMS value – power and power factor, single phase and three-phase balanced circuits, housing wiring, industrial wiring, materials of wiring.

UNIT III ELECTRICAL MACHINES
Principles of operation and characteristics of DC machines. Transformers (single and three phase) ,Synchronous machines , three phase and single phase induction motors.

UNIT IV ELECTRONIC DEVICES AND CIRCUITS

UNIT V MEASUREMENTS AND INSTRUMENTATION
Introduction to transducers: pressure, temperature, position, electrical measurements ,Classification of instruments – moving coil and moving iron Ammeter and Voltmeter – multimeters – dynamometer type Wattmeter – three-phase power measurements – energy meter – megger – instrument transformers (CT and PT)

OUTCOMES:
Ability to
- Understand electric circuits and working principles of electrical machines
- Understand the concepts of various electronic devices
- Choose appropriate instruments for electrical measurement for a specific application

TOTAL: 45 PERIODS
REFERENCES:

EE8361 ELECTRICAL ENGINEERING LABORATORY L T P C
 0 0 4 2

OBJECTIVE:
• To validate the principles studied in theory by performing experiments in the laboratory

LIST OF EXPERIMENTS
1. Load test on DC Shunt & DC Series motor
2. O.C.C & Load characteristics of DC Shunt and DC Series generator
3. Speed control of DC shunt motor (Armature, Field control)
4. Load test on single phase transformer
5. O.C & S.C Test on a single phase transformer
6. Regulation of an alternator by EMF & MMF methods.
7. V curves and inverted V curves of synchronous Motor
8. Load test on three phase squirrel cage Induction motor
9. Speed control of three phase slip ring Induction Motor
10. Study of DC & AC Starters

TOTAL: 60 PERIODS

OUTCOME:
• Ability to perform speed characteristic of different electrical machine

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC Shunt motor</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>DC Series motor</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>DC shunt motor-DC Shunt Generator set</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>DC Shunt motor-DC Series Generator set</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Single phase transformer</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Three phase alternator</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Three phase synchronous motor</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Three phase Squirrel cage Induction motor</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Three phase Slip ring Induction motor</td>
<td>1</td>
</tr>
</tbody>
</table>

ME8362 MECHANICAL ENGINEERING LABORATORY L T P C
 0 0 4 2

OBJECTIVE:
• To impart practical knowledge in operating IC engines and conduct experiments. To understand test procedures in testing material for engineering applications
LIST OF EXPERIMENTS

1. Port timing diagram
2. Valve timing diagram
3. Study of 2,4 stroke I C Engines
4. Load test on 4-stroke petrol engine
5. Performance test on 4-stroke single cylinder diesel engine
6. Performance test on 4-stroke twin cylinder diesel engine
7. Heat balance test on diesel engines
8. Tension test
9. Compression test
10. Deflection test
11. Hardness test (Rockwell and Brinell)
12. Spring test
13. Torsion test
14. Impact test

TOTAL: 60 PERIODS

* Minimum 10 experiments shall be offered.

OUTCOME

- Students will be able to understand Power-generating units such as engines and operate IC engines and conduct tests. They will be able to appreciate the theory behind the functioning of engines. Material properties, their behavior under different kinds of loading and testing can be visualized.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I.C Engine – 2 stroke and 4 stroke model</td>
<td>1 set</td>
</tr>
<tr>
<td>2.</td>
<td>4-stroke Diesel Engine with mechanical loading.</td>
<td>1 No.</td>
</tr>
<tr>
<td>3.</td>
<td>Torsion cylinder Diesel Engine</td>
<td>1 No.</td>
</tr>
<tr>
<td>4.</td>
<td>Universal Tensile Testing machine with double 1 shear</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>attachment –</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Torsion Testing Machine (60 NM Capacity)</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Impact Testing Machine (300 J Capacity)</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Brinell Hardness Testing Machine</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Rockwell Hardness Testing Machine</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>Spring Testing Machine for tensile and compressive loads</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(2500 N)</td>
<td></td>
</tr>
</tbody>
</table>

PE8491 CHEMICAL ENGINEERING THERMODYNAMICS L T P C

3 0 0 3

OBJECTIVE:

- Students will learn PVT behaviour of fluids, laws of thermodynamics, thermodynamic property relations and their application to fluid flow, power generation and refrigeration processes.
UNIT I 9

UNIT II 9

UNIT III 9
Refrigeration and liquefaction process, Thermodynamic Potentials, thermodynamic correlation, Maxwell relations, criteria for Equilibria and stability. Clapeyron equation

UNIT IV 9
Partial molar properties, ideal and non-ideal solutions, standard states definition and choice, Gibbs-Duhem equation, activity and property change of mixing, excess properties of mixtures.

UNIT V 9
Activity coefficient-composition models, thermodynamic consistency of phase equilibria, Chemical Reaction equilibria, Extent of reaction, equilibrium constant and standard free energy change

TOTAL: 45 PERIODS

OUTCOME:
- The course will help the students to know about engineering thermodynamics and understand the practical implications of thermodynamic law in engineering design.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To make the students understand the stages of oil and gas formation, exploration and production

UNIT I ORIGIN AND OCCURRENCE OF PETROLEUM AND SEDIMENTARY ENVIRONMENT

UNIT II EXPLORATION METHODS, WELL PROGNOSIS AND ECONOMIC ANALYSIS

UNIT III GEOLOGICAL STRUCTURE AND GEOLOGGING
Various traps and faults – Core Collection Techniques – Sample logging, Drilling time logging, Mud/Gas/Oil logging – Formation Evaluation Techniques using wire line well logging include – Spontaneous potential logging, Natural Gamma Ray Logging, Caliber Logging, Formation Density Logging, Neutron Porosity logging, Sonic velocity Logging, Electrical Resistance Logging, etc..

UNIT IV DRILLING FLUIDS AND WORK COMPLETION

UNIT V OFF – SHORE TECHNOLOGY
Seismic technology – Sniffer survey – Drilling technology – Off-shore rigs – Primary, secondary and enhanced oil recovery techniques and methods – Major well complication and Remedies.

OUTCOME:
- Identify the origin and favorable geological conditions for the formation and accumulation of petroleum and natural gas.
- Understand the modern oil finding techniques and its feasibility for oil production.
- Formulate drilling fluid for well drilling and well completion methods
- Analyse the various oil recovery and stimulation methods to optimize oil production.

TEXT BOOKS:

REFERENCES:

UNIT I UNIT PROCESSES 9
Nitration, Sulphonation, Halogenation, Esterification, Amination, Saponification and Hydrogenation – Role of the above unit processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis.

UNIT II REACTION MECHANISMS 9
Free radical, substitutions, electrophilic, addition, aromatic electrophilic substitutions, nucleophilic additions, condensation reactions, nucleophilic substitutions in aliphatic and aromatic compounds, cyclo-additions, rearrangements-Beckmann and Fries rearrangement reactions.

UNIT III OILS, FATS, SOAPS & LUBRICANTS 9
Chemical constitution, Chemical analysis of oils and fats – acid, saponification and iodine values, Definitions, determinations and significance. Definition, mechanism of lubrication, preparation of petrolubes, desirable characteristics – viscosity, viscosity index, carbon residue, oxidation stability, flash and fire points, cloud and pour points, aniline point. Semisolid lubricant – greases, preparation of sodium, lithium, calcium and axle greases and uses, consistency test and drop point test. Solid lubricants – graphite and molybdenum disulphide.

UNIT IV CHEMICALS AND AUXILIARIES 9
Preparation, properties and uses of bleaching powder, sodium hypochlorite, hydrogen peroxide, chlorine dioxide. Estimation of available chlorine in hypochlorite bleach liquor. Determination of strength of hydrogen peroxide.

UNIT V COLORANTS 9
Theory of color and constitution: chromophore and auxochrome, classification of dyes based on application. Chemistry and synthesis of azo dye (Methyl red, Methyl orange and Congo red)

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

PE8092
NATURAL GAS ENGINEERING
L T P C
3 0 0 3

OBJECTIVE:
- Enable the students to learn the basic concept and applications of Natural Gas Engineering.

UNIT I

UNIT II
Properties of Natural Gases: typical compositions. Equations of state: general cubic equations, specific high accuracy equations. Use of equation of state to find residual energy properties, gas measurement gas hydrates, condensate stabilization, acid gas treating, gas dehydrations, compressors, process control deliverability test, gathering and transmission, and natural gas liquefaction.

UNIT III

UNIT IV

UNIT V

TOTAL: 45 PERIODS

OUTCOME:
- Students will be able to understand the Natural gas processing, Gas Compression, Gas Gathering and Transport Installation, Operation and trouble shooting of natural gas pipelines.

TEXT BOOK:
REFERENCE:

CH8451 MECHANICAL OPERATIONS

OBJECTIVE:
- To impact knowledge in the field of particle size reduction and also deals with the detail construction and working of equipment's used for mechanical operations.

UNIT I PARTICLE CHARACTERIZATION AND MEASUREMENT
- General characteristics of solids, different techniques of size analysis - Static - Image analysis and Dynamic analysis - Light scattering techniques, shape factor, surface area determination, estimation of particle size. Advanced particle size analysis techniques. Screening methods and equipment, screen efficiency, ideal and actual screens.

UNIT II PARTICLE SIZE REDUCTION AND SIZE ENLARGEMENT
- Laws of size reduction, energy relationships in size reduction, methods of size reduction, classification of equipments, crushers, grinders, disintegrators for coarse, intermediate and fine grinding, power requirement, work index; Advanced size reduction techniques - Nano particle fabrication - Top down approach - Bottom-up approach. Size enlargement - Importance of size enlargement, principle of granulation, briquetting, pelletisation, and flocculation. Fundamentals of particle generation.

UNIT III PARTICLE SEPARATION (GAS-SOLID AND LIQUID-SOLID SYSTEM)
- Gravity settling, sedimentation, thickening, elutriation, double cone classifier, rake classifier, bowl classifier. Centrifugal separation - continuous centrifuges, super centrifuges, design of basket centrifuges; industrial dust removing equipment, cyclones and hydro cyclones, electrostatic and magnetic separators, heavy media separations, floatation, jigging

UNIT IV FILTRATION AND FILTRATION EQUIPMENTS
- Theory of filtration, Batch and continuous filters, Flow through filter cake and filter media, compressible and incompressible filter cakes, filtration equipments - selection, operation and design of filters and optimum cycle of operation, filter aids.

UNIT V MIXING AND PARTICLE HANDLING
- Mixing and agitation - Mixing of liquids (with or without solids), mixing of powders, selection of suitable mixers, power requirement for mixing. Storage and Conveying of solids - Bunkers, silos, bins and hoppers, transportation of solids in bulk, Powder hazards, conveyer selection, different types of conveyers and their performance characteristics.

OUTCOME:
- At the end of this course, the students will be able to understand the overview of equipment used to perform various mechanical operations and problems associated during the implementation and applications.

TEXT BOOKS:

REFERENCES:
2. Christie J. Geankoplis, Transport processes and unit operations.

PM8452 PETROLEUM PRIMARY PROCESSING TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:
- To make the students to learn the primary refining operation of crude oil and testing of petroleum products and its treatment techniques.

UNIT I GENERAL 9

UNIT II TESTING OF PETROLEUM PRODUCTS 9

UNIT III CRUDE PROCESSING 9

UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES 9
Treatment techniques for vacuum distillates with different processes like solvent extraction – Deasphalting, dewaxing, hydrofining, catalytic dewaxing and clay contact process – Production of lubricating oils.

UNIT V BITUMEN PROCESSING and FINAL TREATMENT TECHNIQUES 9
Asphalt manufacture, Air blowing technology, Bitumen Types and their properties, Acid gas removal and sulphur removal techniques.

TOTAL: 45 PERIODS

OUTCOMES:
- Acquire knowledge on types of crude and their primary refining operations.
- Perform various tests to check the quality of crude oil and its products.
- Understand the manufacturing techniques involved in lubricating oil and bitumen.
• Understand the final treatment techniques required for the finished products.

TEXT BOOKS:

REFERENCES:

PE8461 FLUIDS AND SOLID OPERATIONS LABORATORY L T P C

OBJECTIVES:
• To learn experimentally to calibrate flow meters, find pressure loss for fluid flows and determine pump characteristics.
• Students develop a sound working knowledge on different types of crushing equipments and separation characteristics of different mechanical operation separators.

LIST OF EXPERIMENTS - Phase – I (minimum 5 Experiments to be conducted)
1. Calibration of constant and variable head meters
2. Open drum orifice and draining time
3. Flow through straight pipe
4. Flow through annular pipe
5. Flow through helical coil and spiral coil
6. Characteristic curves of pumps
7. Pressure drop studies in packed column

EQUIPMENT REQUIRED
1. Venturi meter
2. Orifice meter
3. Rotameter
4. Weir
5. Open drum with orifice
6. Pipes and fittings
7. Helical and spiral coils
8. Centrifugal pump
9. Packed column
10. Fluidized bed

LIST OF EXPERIMENTS - Phase- II (minimum 5 Experiments to be conducted)
1. Sieve analysis
2. Batch filtration studies using a Leaf filter
3. Batch filtration studies using a Plate and Frame Filter press
4. Characteristics of batch Sedimentation
5. Reduction ratio in Jaw Crusher
6. Reduction ratio in Ball mill
7. Separation characteristics of Cyclone separator
8. Reduction ratio of Roll Crusher
9. Drop weight crusher
10. Drag on Sphere
11. Effectiveness of screen

EQUIPMENT REQUIRED
1. Sieve shaker
2. Leaf filter
3. Plate and Frame Filter Press
4. Sedimentation Jar
5. Jaw Crusher
6. Ball Mill
7. Cyclone Separator
8. Roll Crusher
9. Elutriator
10. Drop Weight Crusher
11. Sieves.

TOTAL: 60 PERIODS

OUTCOMES:
- Use variable area flow meters and variable head flow meters
- Analyze the flow of fluids through closed conduits, open channels and flow past immersed bodies. Select pumps for the transportation of fluids based on process conditions/requirements and fluid properties.
- Determine work index, average particle size through experiments by crushers, ball mill and conducting sieve analysis.
- Design size separation equipments such as cyclone separator, sedimentation, Filters etc.

CH8281 CHEMICAL ANALYSIS LABORATORY L T P C
(Minimum of 8 experiments to be conducted) 0 0 4 2

OBJECTIVE:
- To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of nitrite in water, cement, oil, coal and Phenol.

LIST OF EXPERIMENTS
1. Determination of Redwood / Saybolt numbers, kinematic viscosity and viscosity index of Lubricating oils
2. Determination of flash point, fire point, cloud and pour point of oils
3. Determination of acid value and iodine value of oils
4. Determination of COD of water samples
7. Soap Analysis a. Estimation of total fatty acid b. Estimation of percentage alkali content
8. Flue gas analysis by Orsat’s apparatus
10. Determination of calorific value using bomb calorimeter
11. Determination of nitrite in water.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Description of Equipment</th>
<th>Quantity required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silica Crucible</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Heating Mantle</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Muffle Furnace</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Hot air oven</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Desiccator</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Vacuum Pump</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Condenser</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Reflux Condenser</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Pensky martens closed cup apparatus</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Cleveland Open cup apparatus</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Cloud point apparatus</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Saybolt Viscometer</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Redwood Viscometer</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Bomb Calorimeter</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>COD reflux</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Orsat apparatus</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>UV-Vis Spectrophotometer</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 60 PERIODS

OUTCOMES:
- Familiarization with equipment like viscometers, flash and fire point apparatus etc
- Familiarization of methods for determining COD
- Familiarization of a few simple synthetic techniques for soap

REFERENCES:
1. Environmental pollution analysis, S.M.Khopkar, New age international. 2011

CH8591 HEAT TRANSFER

OBJECTIVE:
- To enable the students to learn heat transfer by conduction, convection and radiation and heat transfer equipments like evaporator and heat exchanger

UNIT I
Importance of heat transfer in Chemical Engineering operations - Modes of heat transfer -
Fourier’s law of heat conduction - one dimensional steady state heat conduction equation for flat plate, hollow cylinder, - Heat conduction through a series of resistances - Thermal conductivity measurement; effect of temperature on thermal conductivity; Heat transfer in extended surfaces.

UNIT II 15
Concepts of heat transfer by convection - Natural and forced convection, analogies between transfer of momentum and heat - Reynold’s analogy, Prandtl and Coulburn analogy. Dimensional analysis in heat transfer, heat transfer coefficient for flow through a pipe, flow past flat plate, flow through packed beds.

UNIT III 15
Heat transfer to fluids with phase change - heat transfer from condensing vapours, drop wise and film wise condensation, Nusselt equation for vertical and horizontal tubes, condensation of superheated vapours, Heat transfer to boiling liquids - mechanism of boiling, nucleate boiling and film boiling.

UNIT IV 15

UNIT V 15
Log mean temperature difference - Single pass and multipass heat exchangers; plate heat exchangers; use of correction factor charts; heat exchangers effectiveness; number of transfer unit - Chart for different configurations - Fouling factors

TOTAL: 75 PERIODS

OUTCOMES:
At the end of this course,
• The students would have knowledge in various heat transfer methodology in process engineering.
• To design heat transfer equipments such as furnace, boilers, heat exchangers evaporation

TEXT BOOKS:

REFERENCES:

CH8551 MASS TRANSFER I L T P C
3 0 0 3

OBJECTIVE:
• Students will learn to determine mass transfer rates under laminar and turbulent conditions.

UNIT I 9
Introduction to mass transfer operations; Molecular diffusion in gases, liquids and solids; diffusivity measurement and prediction; multi-component diffusion.
UNIT II
Eddy diffusion, concept of mass transfer coefficients, theories of mass transfer, different transport analogies, application of correlations for mass transfer coefficients, inter phase mass transfer, relationship between individual and overall mass transfer coefficients. NTU and NTP concepts, Stage-wise and differential contractors.

UNIT III
Humidification – Equilibrium, humidity chart, adiabatic and wet bulb temperatures; humidification operations; theory and design of cooling towers, dehumidifiers and humidifiers using enthalpy transfer unit concept.

UNIT IV
Drying– Equilibrium; classification of dryers; batch drying – Mechanism and time of cross through circulation drying, continuous dryers – material and energy balance; determination of length of rotary dryer using rate concept.

UNIT V
Crystallization - Equilibrium, classification of crystallizers, mass and energy balance; kinetics of crystallization – nucleation and growth; design of batch crystallizers; population balance model and design of continuous crystallizers.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course,
- Students would have knowledge in diffusion and its application in laminar and turbulent conditions.
- Students would apply the mass transfer concepts in the design of humidification columns, dryers and crystallizers.

TEXT BOOKS:

REFERENCES:

PE8091 CHEMICAL REACTION ENGINEERING

OBJECTIVE:
- To enable the students to gain knowledge on different types of chemical reactors, the design of chemical reactors under isothermal and non-isothermal conditions

UNIT I
Rate equation, elementary, non-elementary reactions, theories of reaction rate and Prediction; Design equation for constant and variable volume batch reactors, analysis of experimental kinetics data, integral and differential analysis.
UNIT II 9
Design of continuous reactors - stirred tank and tubular flow reactor, recycle reactors, Equal sized CSTRs in series and parallel, Equal sized PFRs in series and parallel, size comparison of reactors.

UNIT III 9
Design of reactors for multiple reactions - consecutive, parallel and mixed reactions - factors affecting choice, optimum yield and conversion, selectivity, reactivity and yield.

UNIT IV 9
Non-isothermal homogeneous reactor systems, adiabatic reactors, rates of heat exchanges for different reactors, design for constant rate input and constant heat transfer coefficient, operation of batch and continuous reactors, optimum temperature progression.

UNIT V 9
The residence time distribution as a factor of performance; residence time functions and relationship between them in reactor; basic models for non-ideal flow; conversion in non-ideal reactors

TOTAL: 45 PERIODS

OUTCOME:
- At the end of this course, the students would gain knowledge on the selection of reactor for the required reaction.

TEXT BOOKS:

REFERENCE:

CH8561 HEAT TRANSFER LABORATORY L T P C 0 0 4 2

OBJECTIVE:
- To enable the students to develop a sound working knowledge on different types of heat transfer equipments.

LIST OF EXPERIMENTS
1. Heat Transfer in a Double Pipe Heat Exchanger
2. Heat transfer in Shell and Tube Heat Exchanger
3. Heat Transfer in a Bare and Finned Tube Heat Exchanger
4. Heat transfer in composite wall
5. Heat transfer by Forced / Natural Convection
6. Heat Transfer by Radiation - Determination of Stefan Boltzmann constant
7. Heat Transfer by Radiation - Emissivity measurement
8. Heat transfer in Open Pan Evaporator
9. Heat transfer by Single effect evaporation / Multiple effect evaporation
10. Boiling Heat Transfer
11. Heat Transfer through Packed Bed
12. Heat Transfer in a Horizontal Condenser / Vertical Condenser
13. Heat Transfer in Helical Coils
14. Heat Transfer in Agitated Vessels

TOTAL: 60 PERIODS

Minimum 10 experiments to be offered

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

1. Double Pipe Heat Exchanger 1 No.
2. Shell and Tube heat exchanger 1 No.
3. Bare and Finned Tube Heat Exchanger 1 No.
4. Composite wall set up 1 No.
5. Natural convection set up or Forced convection set up 1 No.
6. Stefan Boltzmann Apparatus 1 No.
7. Emissivity measurement set up 1 No.
8. Open Pan Evaporator 1 No.
9. Single effect evaporator or Multiple effect evaporator 1 No.
10. Boiler Compulsory equipment
11. Packed Bed 1 No.
12. Vertical Condenser or Horizontal Condenser 1 No.
13. Helical Coil 1 No.
15. Jacketed vessel 1 No.

Any 10 equipment excluding boiler

OUTCOME:

- Student would be able to calculate heat transfer by conduction, different types of convection using classical models for these phenomena.

PM8561 PETROCHEMICAL ANALYSIS LABORATORY

OBJECTIVE:

- To learn basic principles involved in analysis of petrochemical products.

LIST OF EXPERIMENTS

1. Sulphur content determination
2. Flue gas Analysis – Orsat Apparatus
3. Aromatic Content determination
4. Determination of Lead, Acid and Salt content
5. Analysis of petrochemicals using UV spectrophotometer
6. Analysis of petrochemicals using NMR with MS
7. Analysis of petrochemicals using Gas chromatography
8. Biodegradation of petrochemicals
9. Bioremediation of petrochemicals
10. Refractive index of petrochemicals
11. Determination of moisture content – KF Titrator
12. Total acidity determination
13. Dynamic viscosity measurement
14. Calorific value of fuels

OUTCOMES:
- Carry out experiments as a team to acquire knowledge about physical and chemical characterization of petrochemical products and apply their knowledge in industries.
- Perform the advanced qualitative and quantitative laboratory tasks, including the operation of advanced analytical instrumentation.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Bomb calorimeter
2. ORSAT apparatus
3. UV- Visible spectrophotometer.
4. Gas Chromatography
5. Sulphur content determination instrument
6. NMR
7. Dynamic Viscometer
8. KF-Titrator
9. Refractometer
10. Laminar flow chamber
11. COD Incubator
12. BOD Incubator and shaker
13. Bacteriological chamber
14. Atomic absorption Spectrophotometer

HS8581 PROFESSIONAL COMMUNICATION

OBJECTIVES:
The course aims to:
- Enhance the Employability and Career Skills of students
 - Orient the students towards grooming as a professional
- Make them Employable Graduates
- Develop their confidence and help them attend interviews successfully

UNIT I
Introduction to Soft Skills—Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Time Management—General awareness of Current Affairs

UNIT II
Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— presenting the visuals effectively – 5 minute presentations

UNIT III
Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic — questioning and clarifying — GD strategies- activities to improve GD skills

UNIT IV
Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview &panel interview – FAQs related to job interviews
UNIT V
Recognizing differences between groups and teams- managing time-managing stress- networking professionally- respecting social protocols-understanding career management-developing a long-term career plan-making career changes

OUTCOMES: At the end of the course Learners will be able to:

- Make effective presentations
- Participate confidently in Group Discussions.
- Attend job interviews and be successful in them.
- Develop adequate Soft Skills required for the workplace

Recommended Software
1. Globearena
2. Win English

REFERENCES:

PM8651 PETROLEUM SECONDARY PROCESSING TECHNOLOGY

OBJECTIVE:

- Students will learn the refining operations like cracking, reforming, alklylation, isomerization and coking

UNIT I THERMAL CRACKING AND COKING
Need and significance, types and functions of Secondary Processing. Cracking, Thermal Cracking and Visbreaking. Different Feed Stocks, Products Yields, Qualities and Recent Development. Hydro Cracking- principles, reactions in Hydro Cracking, Catalyst, Hydro Cracking Reaction Conditions, Iso Max Processes and Hydro Desulphurization Processes. Methods of Petroleum Coke Production – Koppers, Thermal Cracking, Delayed Coking, Fluid Coking and Contact Coking.

UNIT II CATALYTIC CRAKING AND HYDRO CRACKING
Catalytic Cracking, Commercial Catalyst, Feedstock and Catalytic Cracking Conditions, Types and Processes- Fixed Bed Cracker, Fluid Catalytic Cracking (FCC), Flexi Cracking.

UNIT III CATALYTIC REFORMING

UNIT IV ALKYLATION AND ISOMERIZATION
UNIT V SPECIALTY PRODUCTS

TOTAL: 45 PERIODS

OUTCOMES:
- Demonstrate knowledge on various secondary processing technologies available for improving the quality of the petroleum products.
- Understand different flow sheets, catalyst and reactor technologies to perform secondary processes.
- Select appropriate technologies to meet the specified needs of the industries with appropriate consideration for safety, environmental and society
- Understand and application of specialty products obtained from crude oil

TEXT BOOKS:

REFERENCES:

CH8651 MASS TRANSFER II

OBJECTIVE:
- To provide introduction to physical and thermodynamic principles of mass transfer with an emphasis on how these principles affect the design of equipment and result in specific requirements for quality and capacity.

UNIT I ABSORPTION
Gas Absorption and Stripping – Equilibrium; material balance; limiting gas-liquid ratio; tray tower absorber - calculation of number of theoretical stages, tray efficiency, tower diameter; packed tower absorber – rate based approach; determination of height of packing using HTU and NTU calculations.

UNIT II DISTILLATION
Vapour liquid equilibria - Raoults law, vapor-liquid equilibrium diagrams for ideal and non-ideal systems, enthalpy concentration diagrams. Principle of distillation - flash distillation, differential distillation, steam distillation, multistage continuous rectification, Number of ideal stages by Mc.Cabe - Thiele method and Ponchan - Savarit method, Total reflux, minimum reflux ratio, optimum reflux ratio. Introduction to multi-component distillation, azeotropic and extractive distillation

UNIT III LIQUID-LIQUID EXTRACTION
Liquid - liquid extraction - solvent characteristics-equilibrium stage wise contact calculations for batch and continuous extractors- differential contact equipment-spray, packed and mechanically
agitated contactors and their design calculations-packed bed extraction with reflux. Pulsed extractors, centrifugal extractors-Supercritical extraction

UNIT IV LEACHING 12
Solid-liquid equilibria- leaching equipment for batch and continuous operations- calculation of number of stages - Leaching - Leaching by percolation through stationary solid beds, moving bed leaching, counter current multiple contact (shank’s system), equipments for leaching operation, multi stage continuous cross current and counter current leaching, stage calculations, stage efficiency.

UNIT V ADSORPTION AND ION EXCHANGE & MEMBRANE SEPARATION PROCESS 18
Adsorption - Types of adsorption, nature of adsorbents, adsorption equilibria, effect of pressure and temperature on adsorption isotherms, Adsorption operations - stage wise operations, steady state moving bed and unsteady state fixed bed adsorbers, break through curves. Principle of Ion exchange, techniques and applications. Solid and liquid membranes; concept of osmosis; reverse osmosis; electro dialysis; ultrafiltration.

OUTCOME:
After completion of the curse, students will be able to
- Design absorber and stripper, distillation column.
- Design extraction, leaching equipments and adsorber.

TEXT BOOKS:

REFERENCES:
parameters, Reactor types- Fixed bed reactor, Fluidised bed reactor, Berty Reactor, Multiphase Reactors- Slurry Reactor, Trickle bed reactor, Bioreactors, Catalysts tests.

UNIT III TRANSPORT PROCESSES WITH REACTIONS CATALYZED BY SOLIDS
Effect of external transport on catalytic reaction rate, Effect of external mass transfer resistance on order of reaction, Effect of external transport on selectivity, Effect of internal mass transport on catalytic reaction rate, Bulk diffusion, Knudsen diffusion, Surface diffusion, Effectiveness factor at isothermal conditions, Significance of intrapellet diffusion, Effect of intrapellet mass transfer on activation energy

UNIT IV CATALYST DEACTIVATION

UNIT V INDUSTRIAL CATALYTIC PROCESSES
Steam reforming, Catalytic cracking, Three Lumped kinetic model for catalytic cracking of gas oil Hydrocracking, Hydrogenation and Dehydrogenation Catalytic Reactions

TOTAL: 45 PERIODS

OUTCOME:
• At the end of this course, the students would gain knowledge on the selection of catalyst and multiphase reactor for the heterogeneous reaction.

TEXT BOOKS:

REFERENCES:

GE8076 PROFESSIONAL ETHICS IN ENGINEERING

OBJECTIVE:
• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

UNIT II ENGINEERING ETHICS
Senses of ‘Engineering Ethics’ – Variety of moral issues – Types of inquiry – Moral dilemmas –

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOME:
• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org
OBJECTIVE:
- To introduce open and closed loop systems and its responses, control loop components and stability of control systems along with instrumentation.

UNIT I INSTRUMENTATION
Principles of measurements and classification of process instruments, measurement of temperature, pressure, fluid flow, liquid weight and weight flow rate, viscosity, pH, concentration, electrical and thermal conductivity, humidity of gases.

UNIT II OPEN LOOP SYSTEMS
Laplace transformation and its application in process control. First order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics; transportation lag.

UNIT III CLOSED LOOP SYSTEMS
Closed loop control systems, development of block diagram for feed-back control systems, servo and regulatory problems, transfer function for controllers and final control element, principles of pneumatic and electronic controllers, transient response of closed-loop control systems and their stability.

UNIT IV FREQUENCY RESPONSE
Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, Bode diagram, stability criterion, tuning of controllers Z-N tuning rules, C-C tuning rules.

UNIT V ADVANCED CONTROL SCHEMES
Feedback control of systems with dead time and inverse response. Control systems with multiple loops. Advanced Control Schemes a) Feed forward b) ratio control. control of distillation towers and heat exchangers.

TOTAL: 45 PERIODS

OUTCOME:
- Students will understand and discuss the importance of process control in process operation and the role of process control engineers. They also understand and design the modern hardware and instrumentation needed to implement process control.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To train the students to develop sound working knowledge on different types of mass transfer equipments.

LIST OF EXPERIMENTS
1. Separation of binary mixture using Simple distillation
2. Separation of binary mixture using Steam distillation
3. Separation of binary mixture using Packed column distillation
4. Measurement of diffusivity
5. Liquid-liquid extraction
6. Drying characteristics of Vacuum Dryer
7. Drying characteristics of Tray dryer
8. Drying characteristics of Rotary dryer
9. Water purification using ion exchange columns
10. Mass transfer characteristics of Rotating disc contactor
11. Estimation of mass/heat transfer coefficient for cooling tower
12. Surface evaporation
13. Adsorption studies
14. Leaching studies
15. Demonstration of Gas – Liquid absorption

*Minimum 10 experiments shall be offered.

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Simple distillation setup 1 No.
2. Steam distillation setup 1 No.
3. Packed column 1 No.
4. Liquid-liquid extractor 1 No.
5. Vacuum Dryer 1 No.
6. Tray dryer 1 No.
7. Rotary dryer 1 No.
8. Ion exchange column 1 No.
9. Rotating disc contactor 1 No.
10. Cooling tower 1 No.
11. Absorption column 1 No.
12. Surface evaporation set up 1 No.
13. Adsorption column set up / Adsorption studies using conical flask 1 No.
14. Leaching column set up / Leaching studies using conical flask 1 No.
Any 10 equipment

OUTCOME:
- Students would be able to determine important data for the design and operation of the process equipments like distillation, extraction, diffusivity and drying principles which are having wide applications in various industries
OBJECTIVE:
- To make the student to be conversant with the theoretical principles and experimental procedures for quantitative estimation of petroleum products.

LIST OF EXPERIMENTS
1. Fluid viscosity determination
2. Carbon residue determination
3. Karl-Fisher Conductometer Apparatus for water estimation
4. Fluid density
5. Aniline point
6. Corrosion testing of petroleum oils and copper
7. Freezing point of Aqueous Engine coolant solution
8. Automatic Distillation
9. Fire point - Flash point
10. Gas Colorific value determination
11. Liquid or solid Colorific value determination
12. Smoke point determination
13. Cloud and pour point determination
14. Softening point determination
15. Ductility of bitumen
16. Penetration index determination

TOTAL: 60 PERIODS

OUTCOMES:
- Perform the various physical and chemical properties of the petroleum products in a safe manner.
- Differentiate various petroleum products by performing the specific tests.
- Perform the advanced qualitative and quantitative laboratory tasks, including the operation of advanced analytical instrumentation.

LIST OF EQUIPMENT
1. Redwood / Saybolt / Engler viscometer
2. Conradson Apparatus
3. Muffle furnace
4. Hydrometer
5. Aniline point apparatus
6. Copper corrosion Apparatus
7. Freezing / Cloud / Pour point apparatus
8. Junkers Gas Calorimeter / Bomb Calorimeter
9. Cleveland / PenskyMartien open and closed cup Flash and fire point Apparatus
10. API Distillation Apparatus
11. Abbey Refractometer
12. Dean and Stark apparatus
13. Karl –Fisher Apparatus
14. Softening point apparatus
15. Ductilometer
16. Penetrometer
OBJECTIVES:

- To impart practical knowledge on the shape and drawing of the process equipments
- To become a design engineers on process equipments design and drawing consideration of the following:

UNIT I THERMODYNAMIC PROPERTIES EVALUATION FOR DESIGN 12

UNIT II HEAT EXCHANGER DESIGN 15

UNIT III EVAPORATOR DESIGN 15

UNIT IV COLUMN DESIGN 18
Design of distillation columns, Absorption columns, Extraction column, and Adsorption columns.

UNIT V PUMPS, FANS AND COMPRESSORS 15

TOTAL:75 PERIODS

OUTCOMES:

- Apply the skill in thermal design of heat transfer equipment like shell and tube, Double pipe heat Exchangers and evaporators, and assessing thermal efficiency of the above equipment in practice.
- Demonstrate the skills in basic design and drawing of different dryers, cooling towers and adsorption columns.
- Apply the concepts involved in phase separation and design of distillation, Extraction and absorption columns.

TEXT BOOKS:

REFERENCES:
GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING

OBJECTIVES:
- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14
Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION 8
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture.
and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL: 45 PERIODS

OUTCOMES:

- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS:

REFERENCES:

REACTION ENGINEERING:

OBJECTIVE:
- Students develop a sound working knowledge on different types of reactors.

LIST OF EXPERIMENTS*
1. Kinetic studies in a Batch reactor
2. Kinetic studies in a Plug flow reactor
3. Kinetic studies in a CSTR
4. Kinetic studies in a Packed bed reactor
5. Kinetic studies in a PFR followed by a CSTR
6. RTD studies in a PFR
7. RTD studies in a Packed bed reactor
8. RTD studies in a CSTR
9. Studies on micellar catalysis
10. Study of temperature dependence of rate constant using CSTR.
11. Kinetic studies in Sono chemical reactor
12. Batch reactive distillation
13. Kinetics of photochemical reaction
14. Demonstration of heterogeneous catalytic reaction
15. Demonstration of gas-liquid reaction

EQUIPMENT REQUIRED
1. BATCH REACTOR
2. Plug flow reactor
3. CSTR
4. Sono-chemical reactor
5. Photochemical reactor
6. Packed bed reactor
*Minimum 5 experiments shall be offered.

OUTCOMES
- Understand rate equation for different types of reactors.
- Design experiments in kinetics to determine conversion and effect of temperature on rate constant.
- Assess the performance of Plug flow Mixed flow and Packed bed by studying the residence time distribution.

PROCESS CONTROL:

OBJECTIVE:
- Students will gain the hands on training about the control systems

LIST OF EXPERIMENTS
1. Open loop study on a level system
2. Open loop study on a flow system
3. Open loop study on a thermal system
4. Closed loop study on a level system
5. Closed loop study on a flow system
6. Closed loop study on a thermal system
7. Response of first order system
8. Response of second order system
9. Response of Non-Interacting level System
10. Response of Interacting level System
11. Tuning of a level system
12. Tuning of a flow system
13. Tuning of a thermal system
14. Flow co-efficient of control valves
15. Characteristics of different types of control valves

*Minimum 5 experiments shall be offered.

TOTAL: 60 PERIODS

OUTCOMES:
- Understand the prerequisites of control strategies and design different process control systems
- Evaluate the suitable controllers for different chemical & Petrochemical process.
- Analyse and tune the control systems unto stability

PM8711 INTERNSHIP L T P C
0 0 0 2

Students shall undergo training in R&D institutions / Academics / Industries for a minimum period of 15 days. At the end of internship students must submit a report for internal evaluation.

PM8801 PIPELINE AND WELDING TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:
- To impart knowledge on piping engineering and welding technology

UNIT I FUNDAMENTALS OF PIPING ENGINEERING 9
Definitions, Piping Components their introduction, applications. Piping MOC, Budget Codes and Standards, Fabrication and Installations of piping. Pipe sizing based on velocity and pressure drop consideration cost, least annual cost approach,

UNIT II PLOT PLAN 9
Development of plot plan for different types of fluid storage, equipment layout, process piping layout, utility piping layout. Stress analysis -Different types of stresses and its impact on piping, methods of calculation, dynamic analysis, flexibility analysis. Different types of support based on requirement and its calculation.

UNIT III GAS, ARC AND RESISTANCE WELDING PROCESSES: 9
Fundamental principles – Air Acetylene welding, Oxyacetylene welding, Carbon arc welding, Shielded metal arc welding, Submerged arc welding, TIG & MIG welding, Plasma arc welding and Electroslag welding processes - advantages, limitations and applications.,Spot welding, Seam welding, Projection welding, Resistance Butt welding, Flash Butt welding, Percussion welding and High frequency resistance welding processes - advantages, limitations and applications.
UNIT IV SOLID STATE WELDING AND OTHER WELDING PROCESSES: 9

UNIT V DESIGN OF WELD JOINTS, WELDABILITY AND TESTING OF WELDMENTS 9
Various weld joint designs – Weldability of Aluminium, Copper, and Stainless steels. Destructive and non-destructive testing of weldments.

TOTAL:45 PERIODS

OUTCOMES:

- Students gain knowledge on fundamentals of piping engineering, pipe hydraulics, piping supports. Upon completion of this course, the students can able to compare different types of Welding process for effective Welding of Structural components.

TEXT BOOKS

PM8811 PROJECT WORK L T P C
0 0 20 10

OBJECTIVE:

- The objective of the project is to make use of the knowledge gained by the student at various stages of the degree course.

Each student is required to submit a report on the project assigned to him by the department. The report should be based on the information available in the literature or data obtained in the laboratory/industry.
Students, in addition to the home problem will be permitted to undertake industrial/ consultancy project work, outside the department, in industries/Research labs for which proportional weightage will be given in the final assessment.

PM8812 SEMINAR L T P C
0 0 4 2

The Objective of the comprehension test is to assess the overall level of proficiency and the scholastic attainment of the student in the various subjects studied during the degree course.
OBJECTIVE:
- To design and conduct experiments and analyze and interpret data related to petrochemical Unit processes

UNIT I FEED STOCK AND SOURCE OF PETROCHEMICALS
Overview of Petrochemical Industry – The key growth area of India, Economics – Feed stock selections for Petrochemicals – Steam cracking of Gas and Naphtha to produce Olefins, Diolefins and Production of Acetylene.

UNIT II SYNTHESIS GAS PRODUCTION
Steam reforming of Natural gas – Naphtha and Heavy distillate to produce Hydrogen and Synthesis gas – Production of Methanol – Oxo process.

UNIT III PRIMARY UNIT PROCESSES
Fundamental and Technological principled involved in Alkylation – Oxidation – Nitration and Hydrolysis.

UNIT IV SECONDARY UNIT PROCESSES
Fundamental and Technological principled involved in Sulphonation, Sulfation and Isomerisation.

UNIT V TERTIARY UNIT PROCESSES
Fundamental and Technological principles involved in Halogenation and Esterification

OUTCOME:
- Students would be able to understand the principles of various unit processes in the petrochemical industry.

TEXT BOOKS:

REFERENCES:

OBJECTIVE:
- To understand the working principles of different instruments, and its applications.

UNIT I INTRODUCTION TO INSTRUMENTS, CHARACTERISTICS AND SIGNAL CONDITIONING
Introduction to Instruments and Their representation: Introduction, Elements, Classification, Standards, Calibration procedures Static and Dynamic Characteristics of Instruments,
Specification of static characteristics, Selection of instruments, Forcing functions, Formulation of
First order and second order system equations, Dynamic response Principals of Analog signal
conditioning, converters, guidelines for analog signal conditioning design, Principles of digital
signal conditioning, computer interface, DACs, ADCs, DAS hardware, DAS software, characteristics of digital data

UNIT II TEMPERATURE, PRESSURE, LEVEL MEASUREMENTS 9
Temperature measurement: Temperature scales, Non electrical methods, Electrical methods, Radiation methods
Pressure measurement: Moderate pressure measurement, High pressure measurement, vacuum measurement
Level measurement: measurement techniques for Liquids and slurries, advance measurement techniques

UNIT III FLOW MEASUREMENTS AND STUDY OF VALVES 9
Flow measurement: Introduction, Review of Venturimeter, orifice meters, rotameters, Pitot tube, working of turbine, vortex shedding, electromagnetic flow meters
Introduction to Advanced flow measurement techniques: Hot Wire anemometer, Laser Doppler anemometer, Ultrasound, Particle image Velocimetry
Study of Valves: Types of Valves, Actuators, Positioners, Valve characteristics, Controllability and Rangeability, Cavitation, Flashing, choking, Valve Sizing for incompressible fluids, compressible fluids, Two phase flows

UNIT IV INTRODUCTION TO QUALITY CONTROL AND ANALYTICAL
TECHNIQUES 9
Introduction to principles of Analytical techniques: Spectroscopic Techniques, Chromatographic
techniques, Crystallography, electrochemical analysis, thermal analysis, electrophoresis, calorimetery, Hybrid techniques
Miscellaneous measurements and analysis: density, viscosity, Refractometer, pH and redoxpotential measurements. Thermal conductivity gas analyzers. Oxygen determination. Orsat analysis

UNIT V WORKING AND INTERPRETATION OF INSTRUMENTAL
ANALYTICAL METHODS: I 9
Spectroscopic techniques: Atomic Absorption, X-ray, inductively coupled argon plasma(ICAP), ultraviolet – visible (UV-VIS), fluorescence, infrared (IR), Raman spectroscopy, mass spectrometry (MS),nuclear magnetic resonance (NMR)
Chromatographic Techniques: gas chromatography (GC), high pressure liquid chromatography, gel permeation chromatography (GPC) , thin layer chromatography (TLC), super critical fluid chromatography (SFC)
Classification of spectroscopic and chromatographic techniques for Analysis of fuels
Working and Interpretation of Instrumental analytical methods: II
Lubricant Analysis: constituents of lubricants, characterization of lubricants by analytical techniques, importance of elemental analysis in lubricants

TOTAL: 45 PERIODS
OUTCOME:

- Students gain an knowledge about the Qualitative and quantitative instrument analysis of different materials.

TEXT BOOKS:

REFERENCES:

CH8094 POLYMER TECHNOLOGY

OBJECTIVE:

- To enable the students to compute molecular weight averages from the molecular weight distribution, Condensation polymerization and transition in polymers.

UNIT I INTRODUCTION

History of Macromolecules – structure of natural products like cellulose, rubber, proteins – concepts of macro molecules – Staudinger’s theory of macromolecules – difference between simple organic molecules and macromolecules.

UNIT II ADDITION POLYMERIZATION

UNIT III CONDENSATION POLYMERIZATION

UNIT IV MOLECULAR WEIGHTS OF POLYMERS

Difference in molecular weights between simple molecules and polymers – number average and weight average molecular weights – Degree of polymerization and molecular weight – molecular weight distribution – Polydispersity – molecular weight determination. Different methods – Gel
UNIT V TRANSITIONS IN POLYMERS

OUTCOME:
- At the end of this course, the student would be able to demonstrate knowledge and understanding on the principles related to the synthesis and characterization of polymers.

TEXT BOOKS:

REFERENCES:

UNIT I NON-CONVENTIONAL OIL
Continuous Accumulation System
Introduction, geology of Heavy oil, extra heavy oil, Tar Sand and bituminous, oil shales, their origin and occurrence worldwide, resources, reservoir characteristics, new production technologies.

UNIT II SHALE GAS/ OIL RESERVOIR
Introduction to shale gas & basin centered gas, tight reservoirs. Shale gas geology, important occurrences in India, petrophysical properties, Development of shale gas, design of hydro fracturing job, horizontal wells, production profiles.

UNIT III COAL BED METHANE
Formation and properties of coal bed methane. Thermodynamics of coal bed methane. Exploration and Evaluation of CBM. Hydro-fracturing of coal seam. Production installation and surface facilities. Well operations and production equipment.
UNIT IV GAS HYDRATES

UNIT V COAL AND GAS CONVERSION TO OIL
Introduction, classification and principles, pyrolysis, theoretical aspect of processes involved in conversion. Technological development of direct conversion and indirect processes and sustainability of conversions.

OUTCOMES:
At the end of the course, the student will be able to
- Recognise and apply the concept of continuous accumulation system.
- Apply the concepts related to exploration and development of Shale Gas Reservoirs.
- Apply the concepts related to exploration and development of Coal Bed Methane.
- Understand and apply the concepts related to formation of gas hydrates.
- Understand and apply different conversion processes for the production of Hydrocarbons.

REFERENCES:
5. Pramod Thakur, Steve Schatzel and KashyAminian, (Editors), 2014, Coal Bed Methane: From Prospects to Pipeline, Elsevier,

GE8071 DISASTER MANAGEMENT

OBJECTIVES:
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.
UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR) 9
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj

Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority (SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT 9
Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA 9
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS 9
Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

OUTCOMES:
The students will be able to
- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management.

TEXT BOOKS:

REFERENCES:
1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005
OBJECTIVES:

- The main objective is to present the industrial related problems, procedures and design.
- Principles for pressure vessels and enhance the understanding of design procedure of pressure vessel and Design of piping layout.

UNIT I DESIGN OF PIPE FITTINGS AND JOINTS
Stress-strain relationships of elastic materials subjected to tensile, compressive and shear forces; Membrane stresses in shells of revolutions; Theories of failures. Design and schematic of simple bolts and screws. Design and drawing of shafts and couplings.

UNIT II DESIGN OF PRESSURE VESSELS
Unfired pressure vessel: Pressure vessel codes; Design of cylindrical and spherical shells under internal and external pressures; Selection and design of flat plate, tori spherical, ellipsoidal, and conical closures; Shell design of tall vertical vessels; Compensations of openings. Vessel supports: Design of skirt, lug, and saddle supports.

UNIT III DESIGN OF STORAGE TANK
Liquid storage tanks: Storage tank codes; Classification; Design of shell, bottom plates, self-supported, and column supported roofs; Wind girder; Nozzles and other accessories.

UNIT IV FABRICATION AND MATERIALS
Fabrication of equipment: Major fabrication steps; Vessel lining; Materials used in fabrication of Chemical Equipments. Selection of process equipment's.

UNIT V DESIGN OF PIPING NETWORK

OUTCOME:
- Students would develop skill to design and install process equipment’s used widely in a chemical industry.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- Students would expertise in the key areas of a good design, drilling and operation management.

UNIT I DRILLING GEOLOGY, OIL AND GAS MIGRATION 9

UNIT II PLANNING AND DRILLING OF WELL 9
Well Proposal, Gathering Data, Designing the Well, Drilling the Well and Testing the Well. Planning of Well, Hole and Casing Sizes and Drilling the Well. Selecting a suitable Drilling Rig, Classification of Drilling Rig, Rig Systems and Equipments.

UNIT III DRILL BITS AND DRILLING FLUIDS 9
Roller Cone Bits, Fixed Cutter Bits and Cone Bits. Optimizing Drilling Parameters- Grading the Dull Bit and Bit Selection. Functions of Drilling Fluid, Basic Mud Classification Designing the Drilling Fluid.

UNIT IV DIRECTIONAL DRILLING, CASING, CEMENTING AND EVALUATION 9
Controlling the Well Path of a Deviated Well, Horizontal Wells and Multi Lateral Well. Importance of Casing in a Well, Designing the Casing String, Role of the Cement Outside the Casing, Mud Removal, Cement Design, Running and Cement Casing and other Cement Jobs. Evaluation Techniques, Physical Sampling at Surface and Downhole, Electrical Logging and Production testing.

UNIT V MANAGING DRILLING OPERATIONS, SAFETY AND ENVIRONMENTAL ISSUES 9

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of this course, the students would be involved from good design to testing completion and abandonment.

REFERENCES:
UNIT I

UNIT II

UNIT III
Surface equipment and operations. Flow control and well heads. Gathering systems; service and cleaning systems; design and testing of flow lines. Separation and separators; separator components, stage separation; design and construction of separators. Meeting – Oil and gas metering techniques.

UNIT IV

UNIT V
Well completion techniques and equipment, drill stem test (DST) flowing well performance, vertical lift performance, optimum size tubing and chokes, production forecast for a pool. Design and analysis of artificial methods of petroleum production. Work over and sand exclusion technique.

OUTCOME:
- Student will be able to understand the basics of oil and gas production engineering techniques.

TEXT BOOKS:

REFERENCE:

PE8071 ADVANCED SEPARATION TECHNIQUES L T P C 3 0 0 3

OBJECTIVE:
- To learn the principle and technical concept of advanced separation processes.

UNIT I BASICS OF SEPARATION PROCESS
Review of Conventional Processes, Recent advances in Separation Techniques based on size, surface properties, ionic properties and other special characteristics of substances, Process concept, Theory and Equipment used in cross flow Filtration, cross flow Electro Filtration, Surface based solid – liquid separations involving a second liquid.
UNIT II MEMBRANE SEPARATIONS
Types and choice of Membranes, Plate and Frame, tubular, spiral wound and hollow fiber
Membrane Reactors and their relative merits, commercial, Pilot Plant and Laboratory Membrane
permeators involving Dialysis, Reverse Osmosis, Nanofiltration, Ultra filtration and Micro filtration,
Ceramic- Hybrid process and Biological Membranes.

UNIT III SEPARATION BY ADSORPTION
Types and choice of Adsorbents, Adsorption Techniques, Dehumidification Techniques, Affinity
Chromatography and Immuno Chromatography, Recent Trends in Adsorption.

UNIT IV INORGANIC SEPARATIONS
Controlling factors, Applications, Types of Equipment employed for Electrophoresis,
Dielectrophoresis, Ion Exchange Chromatography and Eletrodialysis, EDR, Bipolar Membranes.

UNIT V OTHER TECHNIQUES
Separation involving Lyophilisation, Pervaporation and Permeation Techniques for solids, liquids
and gases, zone melting, Adductive Crystallization, other Separation Processes, Supercritical fluid
Extraction, Oil spill Management, Industrial Effluent Treatment by Modern Techniques.

TOTAL: 45 PERIODS

OUTCOME:
1. Fully understand key concepts of separation processes including equilibrium stages,
reflux, countercurrent contacting, limiting cases, efficiency and mass transport effects.

TEXT BOOKS:

REFERENCES:
1987

GE8075 INTELLECTUAL PROPERTY RIGHTS

OBJECTIVE:
To give an idea about IPR, registration and its enforcement.

UNIT I INTRODUCTION
Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights,
Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from
WTO to WIPO –TRIPS, Nature of Intellectual Property, Industrial Property, technological
Research, Inventions and Innovations – Important examples of IPR.

UNIT II REGISTRATION OF IPRs
Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical
Indications, Trade Secrets and Industrial Design registration in India and Abroad
UNIT III AGREEMENTS AND LEGISLATIONS

UNIT IV DIGITAL PRODUCTS AND LAW

UNIT V ENFORCEMENT OF IPRs
Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies.

TOTAL: 45 PERIODS

OUTCOME:
- Ability to manage Intellectual Property portfolio to enhance the value of the firm.

TEXT BOOKS:

REFERENCES:

CH8791 TRANSPORT PHENOMENA

OBJECTIVE:
- To develop a fundamental knowledge of the physical principles that govern the transport of momentum, energy and mass, with emphasis on the mathematical formulation of the conservation principles.

UNIT I TRANSPORT PHENOMENA BY MOLECULAR MOTION
Vectors/Tensors, Newton’s law of viscosity, Newtonian & Non-Newtonian fluids, rheological models, Temperature, pressure and composition dependence of viscosity, Kinetic theory of viscosity, Fourier’s law of heat conduction, Temperature, pressure and composition dependence of thermal conductivity, Kinetic theory of thermal conductivity, Fick’s law of diffusion, Temperature, pressure and composition dependence of diffusivity, Kinetic theory of diffusivity.

UNIT II ONE DIMENSIONAL MOMENTUM TRANSPORT
Shell Momentum balances, boundary conditions, velocity profiles, average velocity, momentum flux at the surfaces of Newtonian and non-Newtonian for flow of a falling film, flow through circular tube, slits, flow through an Annulus, Adjacent flow of two Immiscible fluids, Equations of Change (Isothermal), equation of continuity, equation of motion, equation of energy (isothermal) their applications in fluid flow problems.
UNIT III ONE DIMENSIONAL HEAT TRANSPORT 9
Shell energy balances, boundary conditions, temperature profiles, average temperature, energy fluxes at surfaces for different types of heat sources such as electrical, nuclear viscous and chemical. Equations of change (non-isothermal), equation of motion for forced and free convection, equation of energy (non-isothermal).

UNIT IV ONE DIMENSIONAL MASS TRANSPORT 9
Shell mass balances, boundary conditions, concentration profiles, average concentration, mass flux at surfaces for Diffusion through stagnant gas film, Diffusion with homogeneous and heterogeneous chemical reaction, Diffusion in to a falling liquid film, Diffusion and chemical reaction in porous catalyst and the effectiveness factor, equation of continuity for binary mixtures, equation of change to set up diffusion problems for simultaneous heat and mass transfer.

UNIT V TRANSPORT IN TURBULENT AND BOUNDARY LAYER FLOW 9
Turbulence phenomena; phenomenological relations for transfer fluxes; time smoothed equations of change and their applications for turbulent flow in pipes; boundary layer theory; laminar and turbulent hydrodynamics thermal and concentration boundary layer and their thicknesses; analysis of flow over flat surface. Introduction to macroscopic balances for isothermal flow systems, non-isothermal systems and multicomponent systems.

TOTAL: 45 PERIODS

OUTCOME:
- Students would gain the knowledge of fundamental connections between the conservation laws in heat, mass, and momentum in terms of vector and tensor fluxes. The students would be able to understand the mechanism of fluids in motion under different conditions.

TEXT BOOKS:

REFERENCES:

PM8082 WATER TREATMENT AND MANAGEMENT L T P C
3 0 0 3

OBJECTIVE:
- To focus on the wastewater transport system and the theory and design technique for the wastewater treatment process

UNIT I INTERNAL TREATMENT PROCESS 9
UNIT II

EXTERNAL TREATMENT PROCESS

UNIT III

BOILER WATER AND COOLING WATER

UNIT IV

WASTE WATER TREATMENT

UNIT V

WATER MANAGEMENT IN INDIA

TOTAL: 45 PERIODS

OUTCOME:

• The students would have learnt the physical/chemical/biological characteristics and evaluation technique for sewage. They would understand the theory, engineering application, and design technique for the wastewater treatment unit process.

TEXT BOOKS:

REFERENCES:

CH8072

FLUIDIZATION ENGINEERING

L T P C

3 0 0 3

OBJECTIVE:

• To enable the students to learn the design aspects of fluidized beds.

UNIT

BASICS OF FLUIDIZATION

Packed bed – Velocity – Pressure drop relations – Correlations of Ergun, Kozneykarman – On set of fluidization – Properties of fluidized beds – Development of fluidization from fixed bed.
UNIT II FLUIDIZED BED TYPES 9
Minimum fluidization conditions – Expanded bed – Elutriation – Moving solids and dilute phase –
spouted bed.

UNIT III DESIGN ASPECTS 9
Channeling – Bed expansion in liquid – Solid and gas – Solid fluidizations. Design aspects of
fluidized bed systems.

UNIT IV HEAT AND MASS TRANSFER IN FLUIDIZED BEDS 9
Heat and mass transfer in fluidized bed systems – Industrial applications and case studies of
fluidized bed systems.

UNIT V OTHER TYPES OF FLUIDIZATION 9
Single stage and multistage fluidization – Collection of fines – Use of cyclones.

TOTAL: 45 PERIODS

OUTCOME:
• Upon completion of this course, the students will have the knowledge on fluidization
phenomenon, behavior of fluidized beds and industrial applications.

TEXT BOOKS:
2. Robert H. Perry and Don W. Green, “Perry’s Chemical Engineer’s Hand Book”, 7th Edition,

REFERENCES:

PM8071 CHEMICAL PROCESS DESIGN L T P C
 3 0 0 3

OBJECTIVE:
• This course would expose the students how to develop process alternatives, how to
 generate them and how to quickly screen the alternatives.

UNIT I INTRODUCTION 9
The Hierarchy of Chemical process Design- Overall process Design, approaches to design.

UNIT II CHOICE OF REACTORS AND SEPARATOR 9
Reaction path, reactor performance, practical reactors, Separation of Heterogeneous mixtures,
homogeneous fluid mixtures.

UNIT III SYNTHESIS OF REACTION – SEPARATION SYSTEMS 9
Process recycle, Batch processes, process yield

UNIT IV DISTILLATION SEQUENCING 9
Using simple columns, using columns with more than two products, Distillation Sequencing Using
thermal coupling.
UNIT V HEAT EXCHANGER NETWORK & UTILITIES –ENERGY TARGETS

Heat recovery pinch, The Problem table Algorithm, Utilities Selection, Energy targets capital& total Cost targets -Number of Heat Exchanger Units, Area Targets, Number of Shells Targets, Capital Cost Targets, Total Cost Targets.

TOTAL: 45 PERIODS

OUTCOME:
- At the end of this course, the students will have learned how to solve large, open-ended under defined design problems of realistic complexity.

REFERENCES:

PE8073 ENHANCED OIL RECOVERY L T P C
3 0 0 3

OBJECTIVE:
- To impart knowledge on how residual oil is recovered and the problems associated with Enhanced Oil Recovery.

UNIT I FUNDAMENTALS OF ENHANCED OIL RECOVERY

UNIT II WATER FLOODING
Properties, sampling and analysis of oil field water; Injection waters; Water flooding - Sweep efficiency, Predictive techniques, Improved water flood processes, Performance of some important water floods.

UNIT III ENHANCED OIL RECOVERY OPERATIONS - 1
Flooding – miscible, CO$_2$, polymer, alkaline, surfactants, steam;

UNIT IV ENHANCED OIL RECOVERY OPERATIONS - 2
Gas injection, in-situ combustion technology, microbial method.

UNIT V PROBLEMS IN ENHANCED OIL RECOVERY
Precipitation and deposition of Asphaltenes and Paraffin’s, Scaling problems, Formation of damage due to migration of fines, Environmental factors.

TOTAL: 45 PERIODS

OUTCOME:
- Students would gain knowledge on residual oil recovery, operations and problems of Enhanced Oil Recovery.

REFERENCE:
OBJECTIVE:
- To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

UNIT II

UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

OUTCOME:
- Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

OBJECTIVE:
- To give an overview of various methods of process modeling, different computational techniques for simulation.

UNIT I
INTRODUCTION
Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.

UNIT II
STEADY STATE LUMPED SYSTEMS
Degree of freedom analysis, single and network of process units, systems yielding linear and non-linear algebraic equations, flow sheeting – sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.
UNIT III UNSTEADY STATE LUMPED SYSTEMS
Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems.

UNIT IV STEADY STATE DISTRIBUTED SYSTEM
Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.

UNIT V UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES

TOTAL: 45 PERIODS

OUTCOME:
- Upon completing the course, the student should have understood the development of process models based on conservation principles and process data and computational techniques to solve the process models.

TEXT BOOKS:

REFERENCES:

PM8079 PETROLEUM PROCESS EQUIPMENT AUXILIARIES

OBJECTIVE:
- To give an overview of various equipment auxiliaries involved in the petroleum processes.

UNIT I ELECTRICAL MOTORS AND STARTERS

UNIT II ROTARY EQUIPMENT

UNIT III INDUSTRIAL VALVES
Needle valves – Globe, gate and ball valves – Butterfly valves – Check and needle valves – Piping system.
UNIT IV INDUSTRIAL DRYERS

UNIT V PROCESS UTILITY EQUIPMENTS
Vacuum devices – Filters – Cooling towers – Refrigeration systems – Flare system – Equipments for waste water treatment systems.

OUTCOME:
• Student gain knowledge on the utility equipment’s and other auxiliaries and its applications.

TEXT BOOKS:

REFERENCES:

PE8074 MULTICOMPONENT DISTILLATION
3 0 0 3

OBJECTIVE:
• To understand the concepts of Multicomponent distillation systems.

UNIT I THERMODYNAMIC PRINCIPLES

UNIT II THERMODYNAMIC PROPERTY EVALUATION
Fundamental principles involved in the separation of multi component mixtures – Determination of bubble-point and Dew Point Temperatures for multi component mixtures – equilibrium flash distillation calculations for multi component mixtures – separation of multi component mixtures at total reflux.

UNIT III MINIMUM REFLUX RATIO FOR MCD SYSTEM
General considerations in the design of columns – Column sequencing – Heuristics for column sequencing – Key components – Distributed components – Non-Distributed components – Adjacent keys. Definition of minimum reflux ratio – calculation of \(R_m \) for multi component distillation – Underwood method – Colburn method.
UNIT IV VARIOUS METHODS OF MCD COLUMN DESIGN 9
Theta method of convergence – Kb method and the constant composition method – Application of the Theta method to complex columns and to system of columns – Lewis Matheson method – Stage and reflux requirements – Short cut methods and Simplified graphical procedures.

UNIT V VARIOUS TYPES OF MCD COLUMNS 9
Design of sieve, bubble cap, valve trays and structured packing columns for multi component distillation – computation of plate efficiencies.

TOTAL: 45 PERIODS

OUTCOME:

- Students able to design multicomponent distillation unit. They learn about various types of MCD column.

TEXT BOOKS:

REFERENCES:

PE8075 PETROLEUM CORROSION TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:

- To understand the types of corrosion found in the petroleum industries. This course will provide the student with knowledge of the analytical methods needed to diagnose, treat, and monitor corrosion to reduce costs, protect the environment, and increase safety.

UNIT I 9

UNIT II 9

UNIT III 9
Role of oxygen in oil filed corrosion- down hole and surface equipment - water flood. Removal of oxygen, analysis and criteria for control. Role of carbon dioxide (CO₂) in corrosion-Effect of temperature and pressure - Corrosion of well tubing and other equipments. Role of hydrogen sulphide (H₂S)-Corrosion in downhole, surface, storage and pipelines.

UNIT IV 9
UNIT V
Inspection and corrosion monitoring. Oil treatment corrosion - crude oil properties - desalting-sweetening processes. Corrosion in oil storage tank corrosion- oilfield and oil treating facilities-oil/ gas pipelines -offshore platforms- subsea systems.

OUTCOME:
- Students will identify and define the various types of petroleum corrosion and prevention technologies.

TEXT BOOKS:

REFERENCE:

PM8081 REFINERY PROCESS DESIGN

OBJECTIVE:
- To get acquainted with process design of distillation columns involving multicomponent and complex mixtures. To learn methodologies practiced in rating and designing heat transfer equipment used in refining and process industry.

UNIT I MULTICOMPONENT DISTILLATION
Dew point and bubble point for multi component mixtures. Design of multi component distillation column, Number of variables, Selection of key components, Selection of column pressure, Feed condition, Plate-to-plate calculations, Empirical short cut methods, Introduction to rigorous solution procedures.

UNIT II PETROLEUM REFINERY DISTILLATION
TBP, EFV, ASTM distillation curves and their relevance, Material balance and flash zone calculations for petroleum refinery distillation columns, Pump around and pump back calculations, Overall energy requirements, Estimation of number of equilibrium stages, Design using Packie charts and Watkins method, Introduction to rigorous solution procedure based on pseudo components.

UNIT III COLUMN DESIGN

UNIT IV FIRED HEATERS
Heat load calculations for furnace heaters used in crude refining, Basic constructional features, Different furnace types, Review of factors to be considered in the design of fired heaters, Introduction to manual calculations methods.

UNIT V PUMPS AND COMPRESSORS
Types of pumps and compressors. Selection criteria. Power rating calculations based on process
duty. Use of operating curves of centrifugal pump. NPSHR and NPSHA. Pump Cavitation. Surge problem in compressors.

TOTAL: 45 PERIODS

OUTCOME:
- Students learn process design aspects related to distillation column, Fired Heaters, pumps and compressors

TEXT BOOKS:

PE8079 STORAGE TRANSPORTATION OF CRUDE OIL AND NATURAL GAS

OBJECTIVE:
- To understand the natural gas regasification technology, crude oil transportation and to learn the concepts of storage.

UNIT I INTRODUCTION
Crude oil Trade, Selection of Port Location, Ship Building/Shipyards.

UNIT II NATURAL GAS REGASIFICATION TECHNOLOGY
Commercial Sourcing of Natural Gas, Different Kinds of Regasification Techniques, Regasification Process & Cold Utilization, Synchronization of Degasified gas and Pipelines, Current Status in India

UNIT III CRUDE OIL TRANSPORTATION
Transportation techniques of crude oil, Pipeline specification, Corrosion Prevention techniques, Pressure drop, Pumps and Booster station, Wax deposition and prevention, Chemical treatment

UNIT IV DESIGN
Basic Engineering Aspects of Terminal Design, Design of Liquefaction Train, Ship Building/Shipyards, Storage Facilities

UNIT V CHARACTERISTICS OF STORAGE

TOTAL: 45 PERIODS

OUTCOME:
- Students would be able to design various terminal design. They will be familiarize with the storage systems.
TEXT BOOKS:

PE8078 RESERVOIR CHARACTERIZATION AND MODELING L T P C
3 0 0 3

OBJECTIVE:
- To enable the students to follow and utilize different concepts of reservoir modeling and characteristics and their usage.

UNIT I
Overview of reservoir characterization and modeling problems. Reservoir mapping. 3D modeling. Univariate, bivariate and multivariate statistics for geological data analysis.

UNIT II

UNIT III

UNIT IV
Reservoir simulation – Investigation of petroleum reservoir characteristics and behavior, including: pore volume, fluid distribution and movement, and recovery. Optimized field development and management plans.

UNIT V

TOTAL: 45 PERIODS

OUTCOME:
- Students gain the knowledge of reservoir characterization, modeling and simulation methods used in oil industry.

TEXT BOOKS:
2. Wellsite Geological Techniques for petroleum Exploration by Shay’s et al.

REFERENCE:
OBJECTIVE:
- To impart knowledge on different types of petrochemicals

UNIT I PRECURSORS 9
Alternate routes with flow diagram for production of methane, ethane, propane, ethylene, propylene, butylenes, acetylene, naphthalene. Chemicals from methane, ethane, propane, ethylene, propylene, butylenes, acetylene.

UNIT II FIRST GENERATION PETROCHEMICALS 9
Alternate routes with flow diagram for production of butadiene, related dienes, aromatics – Benzene, toluene, xylene – Chemicals from butadiene, related dienes, aromatics – Benzene, toluene, xylene.

UNIT III SECOND GENERATION PETROCHEMICALS 9
Alternate routes with flow diagram for production of ethylene glycol, VCM, acrylonitrile, phenol, caprolactum, adipicacid, hexmethylene diamine, DMT, TPA, maleic anhydride, styrene.

UNIT IV THIRD GENERATION PETROCHEMICALS 9
Polymerization – Modes and techniques – Production of polyethylene – LDPE, HDPE, polypropylene, polybutadiene rubber, SBR, polystyrene, SAN, ABS.

UNIT V FOURTH GENERATION PETROCHEMICALS 9
Polyacrylonitrile, polyvinyl chloride, polycarbonates, nylon 6, nylon 66, polyesters, formaldehyde resins, explosives, dyes.

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of this course, the students will know the sources and production methods of petrochemicals and the methods of manufacture of different petrochemicals from additives to electronic chemicals.

TEXT BOOKS:

REFERENCES:

OBJECTIVE:
- To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION 9
and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

UNIT II TQM PRINCIPLES
Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II
Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY MANAGEMENT SYSTEM

TOTAL: 45 PERIODS

OUTCOME:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

REFERENCES:
4. ISO9001-2015 standards

PE8076 PETROLEUM ECONOMICS

OBJECTIVE:
- To understand the basic quantitative theories and methodologist in oil sector.
UNIT I 9
Supply and demand curves, the elasticity of supply and demand, public finance concepts such as consumer surplus, excise and export taxes. Forecasting techniques for the energy industry, including energy prices. Demand and supply for natural gas, cured oil and pipeline transportation, determinants of energy demand, energy markets, energy pricing, stability and performance of energy markets.

UNIT II 9
The economics of investment, Discounted cash flow analysis, Cost Benefit Analyses, Internal Rate of Return, NPV, Profitability Index, Natural Monopoly theory, National competition Policy, Gas Market Regulation, taxation of the oil and gas industry, government policy and trade permits, Monte Carlo analysis, Net Back Pricing, Transfer Pricing and regulatory aspects.

UNIT III 9
Application of petroleum engineering principles and economics to the evaluation of oil and gas projects, evaluation principles, time value of money concepts, investment measures, cost estimation, price and production forecasting, risk and uncertainty, project selection and capital budgeting inflation, escalation, operating costs, depreciation, cost recovery.

UNIT IV 9
Petroleum exploration and production contracts. Sharing of the economic rent, portfolio management. Value creation, Corporate finance & return on capital, economic appraisal methods for oil filed development, reservoir model costs and calculations.

UNIT V 9
Case studies: Economic study of an oil filed development project, petrochemical plant project, natural gas break even price, natural gas liquefaction cost, LGN transport cost, investment profitability study for a gas pipeline.

TOTAL: 45 PERIODS

OUTCOME:
- Students will be able to understand the concept and fundamentals of engineering economics of energy industry

TEXT BOOKS:

REFERENCES:

PM8072 DESIGN OF HEAT EXCHANGERS L T P C
3 0 0 3

OBJECTIVES:
- To learn the thermal and stress analysis on various parts of the heat exchangers
- To analyze the sizing and rating of the heat exchangers for various applications
UNIT I INTRODUCTION
Types of heat exchangers, shell and tube heat exchangers – regenerators and recuperators – Temperature distribution and its implications – Parts description, Classification as per Tubular Exchanger Manufacturers Association (TEMA)

UNIT II PROCESS DESIGN OF HEAT EXCHANGERS

UNIT III STRESS ANALYSIS
Stress in tubes – header sheets and pressure vessels – thermal stresses, shear stresses – types of failures, buckling of tubes, flow induced vibration.

UNIT IV COMPACT AND PLATE HEAT EXCHANGER
Types- Merits and Demerits- Design of compact heat exchangers, plate heat exchangers, performance influencing parameters, limitations.

UNIT V CONDENSERS AND COOLING TOWERS
Design of surface and evaporative condensers – cooling tower – performance characteristics.

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of this course, the students can able to apply the mathematical knowledge for thermal and stress analysis on various parts of the heat exchangers components.

TEXT BOOKS:

REFERENCES:

PE8093 PLANT SAFETY AND RISK ANALYSIS
L T P C 3 0 0 3

OBJECTIVE:
- Become a skill and person in hazard and HAZOP analysis and able to find out the root cause of an accident. Gain knowledge in devising safety policy and procedures to be adopted to implement total safety in a plant.
UNIT I INDUSTRIAL SAFETY
Concepts of safety – Hazard classification chemical, physical, mechanical, ergonomics, biological and noise hazards – Hazards from utilities like air, water, steam.

UNIT II HAZARD IDENTIFICATION AND CONTROL

UNIT III RISK MANAGEMENT

UNIT IV SAFETY PROCEDURES

UNIT V SAFETY IN HANDLING AND STORAGE OF CHEMICALS
Safety measures in handling and storage of chemicals – Fire chemistry and its control – Personnel protection – Safety color codes of chemicals.

OUTCOME:
- At the end of this course, the students will be able to analyze the risk in the process industries.

TEXT BOOKS:

REFERENCES:

PC8071 SAFETY IN CHEMICAL INDUSTRIES
L T P C
3 0 0 3

OBJECTIVE:
- This course would expose the students to identify and assess hazard in any stage of operation, to quantify and manage them as well in chemical industries.

UNIT I SAFETY IN PROCESS DESIGN AND PRESSURE SYSTEM DESIGN
Design process, conceptual design and detail design, assessment, inherently safer design-chemical reactor, types, batch reactors, reaction hazard evaluation, assessment, reactor safety, operating conditions, unit operations and equipments, utilities. Pressure system, pressure vessel design, standards and codes- pipe works and valves- heat exchangers- process machinery- over pressure protection, pressure relief devices and design, fire relief, vacuum and thermal relief, special situations, disposal- flare and vent systems- failures in pressure system.
UNIT II PLANT COMMISSIONING AND INSPECTION 9
Commissioning phases and organization, pre-commissioning documents, process commissioning,
commissioning problems, post commissioning documentation Plant inspection, pressure vessel,
pressure piping system, nondestructive testing, pressure testing, leak testing and monitoring-
plant monitoring, performance monitoring, condition, vibration, corrosion, acoustic emission-pipe
line inspection.

UNIT III PLANT OPERATIONS 9
Operating discipline, operating procedure and inspection, format, emergency procedures- hand
over and permit system- start up and shut down operation, refinery units- operation of fired
heaters, driers, storage- operating activities and hazards- trip systems- exposure of personnel

UNIT IV PLANT MAINTENANCE, MODIFICATION AND EMERGENCY PLANNING 9
Management of maintenance, hazards- preparation for maintenance, isolation, purging, cleaning,
confined spaces, permit system- maintenance equipment- hot works- tank cleaning, repair and
demolition- online repairs- maintenance of protective devices- modification of plant, problems-
controls of modifications. Emergency planning, disaster planning, onsite emergency- offsite
emergency, APELL

UNIT V STORAGES 9
General consideration, petroleum product storages, storage tanks and vessel- storages layout-
segregation, separating distance, secondary containment- venting and relief, atmospheric vent,
pressure, vacuum valves, flame arrestors, fire relief- fire prevention and protection- LPG storages,
pressure storages, layout, instrumentation, vapourizer, refrigerated storages- LNG storages,
hydrogen storages, toxic storages, chlorine storages, ammonia storages, other chemical
storages- underground storages- loading and unloading facilities- drum and cylinder storage-
ware house, storage hazard assessment of LPG and LNG

TOTAL: 45 PERIODS

OUTCOME:
• Upon completion of the course, the students understand the key issues for making
 petroleum production and processing, cleaner and safe.

TEXT BOOK::

REFERENCES:
1. “Quantitative Risk Assessment in Chemical Process Industries” American Institute of
 Chemical Industries, Centre for Chemical Process safety.

GE8073 FUNDAMENTALS OF NANOSCIENCE
L T P C 3 0 0 3

OBJECTIVE:
• To learn about basis of nanomaterial science, preparation method, types and application
UNIT I INTRODUCTION 8
Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION 9
Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS 12

UNIT IV CHARACTERIZATION TECHNIQUES 9

UNIT V APPLICATIONS 7

TOTAL: 45 PERIODS

OUTCOMES:
- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
- Will develop knowledge in characteristic nanomaterial

TEXT BOOKS:

REFERENCES: